On symmetries of compact Riemann surfaces with cyclic groups of automorphisms

被引:5
作者
Bujalance, E.
Cirre, F. J. [1 ]
Gamboa, J. M.
Gromadzki, G.
机构
[1] Univ Nacl Educ Distancia, Fac Ciencias, Dept Matemat Fundamentales, Madrid 28040, Spain
[2] UCM, Fac Math, Dept Algebra, Madrid 28040, Spain
[3] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
关键词
Riemann surface; automorphism group; Fuchsian and NEC groups; symmetry; ovals;
D O I
10.1016/j.jalgebra.2006.03.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Riemann surface X is said to be of type (n, m) if its full automorphism group Aut X is cyclic of order n and the quotient surface X/ Aut X has genus m. In this paper we determine necessary and sufficient conditions on the integers n, m, g and gamma, where n is odd, for the existence of a Riemann surface of genus g and type (n, m) admitting a symmetry with gamma ovals. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 95
页数:14
相关论文
共 12 条
[1]   On cyclic groups of automorphisms of Riemann surfaces [J].
Bujalance, E ;
Conder, M .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 :573-584
[2]  
BUJALANCE E, 1990, LECT NOTES MATH, V1420, P81
[3]   Symmetries of Riemann surfaces from a combinatorial point of view [J].
Gromadzki, G .
TOPICS ON RIEMANN SURFACES AND FUCHSIAN GROUPS, 2001, 287 :91-112
[4]   On a Harnack-Natanzon theorem for the family of real forms of Riemann surfaces [J].
Gromadzki, G .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 121 (03) :253-269
[5]  
Harnack A., 1876, MATH ANN, VX, P189
[6]   CYCLIC GROUPS OF AUTOMORPHISMS OF A COMPACT RIEMANN SURFACE [J].
HARVEY, WJ .
QUARTERLY JOURNAL OF MATHEMATICS, 1966, 17 (66) :86-&
[7]  
Hoare A. H. M., 1982, LONDON MATH SOC LECT, V71, P221, DOI 10.1017/CBO9780511661884.014
[8]   Geometry and algebra of real forms of complex curves [J].
Natanzon, SM .
MATHEMATISCHE ZEITSCHRIFT, 2003, 243 (02) :391-407
[9]   KLEIN SURFACES [J].
NATANZON, SM .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (06) :53-108
[10]   FINITELY MAXIMAL FUCHSIAN GROUPS [J].
SINGERMAN, D .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1972, 6 (DEC) :29-38