Accelerated SPECT image reconstruction with FBP and an image enhancement convolutional neural network

被引:32
作者
Dietze, Martijn M. A. [1 ,2 ,3 ]
Branderhorst, Woutjan [1 ,2 ]
Kunnen, Britt [1 ,2 ,3 ]
Viergever, Max A. [2 ,3 ]
de Jong, Hugo W. A. M. [1 ,2 ,3 ]
机构
[1] Univ Utrecht, Radiol & Nucl Med, POB 85500, NL-3508 GA Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, POB 85500, NL-3508 GA Utrecht, Netherlands
[3] Univ Utrecht, Image Sci Inst, POB 85500, NL-3508 GA Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
SPECT; Deep learning; Radioembolization; Reconstruction; RADIOEMBOLIZATION;
D O I
10.1186/s40658-019-0252-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundMonte Carlo-based iterative reconstruction to correct for photon scatter and collimator effects has been proven to be superior over analytical correction schemes in single-photon emission computed tomography (SPECT/CT), but it is currently not commonly used in daily clinical practice due to the long associated reconstruction times. We propose to use a convolutional neural network (CNN) to upgrade fast filtered back projection (FBP) image quality so that reconstructions comparable in quality to the Monte Carlo-based reconstruction can be obtained within seconds.ResultsA total of 128 technetium-99m macroaggregated albumin pre-treatment SPECT/CT scans used to guide hepatic radioembolization were available. Four reconstruction methods were compared: FBP, clinical reconstruction, Monte Carlo-based reconstruction, and the neural network approach. The CNN generated reconstructions in 5sec, whereas clinical reconstruction took 5min and the Monte Carlo-based reconstruction took 19min. The mean squared error of the neural network approach in the validation set was between that of the Monte Carlo-based and clinical reconstruction, and the lung shunting fraction difference was lower than 2 percent point. A phantom experiment showed that quantitative measures required in radioembolization were accurately retrieved from the CNN-generated reconstructions.ConclusionsFBP with an image enhancement neural network provides SPECT reconstructions with quality close to that obtained with Monte Carlo-based reconstruction within seconds.
引用
收藏
页数:12
相关论文
共 26 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], 2015, ICLR POSTER
[4]   Acceleration of Monte Carlo SPECT simulation using convolution-based forced detection [J].
de Jong, HWAM ;
Slijpen, ETP ;
Beekman, FJ .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2001, 48 (01) :58-64
[5]   Improved quantitative 90Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling [J].
Dewaraja, Yuni K. ;
Chun, Se Young ;
Srinivasa, Ravi N. ;
Kaza, Ravi K. ;
Cuneo, Kyle C. ;
Majdalany, Bill S. ;
Novelli, Paula M. ;
Ljungberg, Michael ;
Fessler, Jeffrey A. .
MEDICAL PHYSICS, 2017, 44 (12) :6364-6376
[6]   Performance of a dual-layer scanner for hybrid SPECT/CBCT [J].
Dietze, Martijn M. A. ;
Kunnen, Britt ;
van der Velden, Sandra ;
Steenbergen, J. H. Leo ;
Koppert, Wilco J. C. ;
Viergever, Max A. ;
de Jong, Hugo W. A. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (10)
[7]   Fast quantitative reconstruction with focusing collimators for liver SPECT [J].
Dietze, Martijn M. A. ;
van der Velden, Sandra ;
Lam, Marnix G. E. H. ;
Viergever, Max A. ;
de Jong, Hugo W. A. M. .
EJNMMI PHYSICS, 2018, 5
[8]  
Dietze MMA, 2019, MED PHYS
[9]   Quantitative Monte Carlo-based holmium-166 SPECT reconstruction [J].
Elschot, Mattijs ;
Smits, Maarten L. J. ;
Nijsen, Johannes F. W. ;
Lam, Marnix G. E. H. ;
Zonnenberg, Bernard A. ;
van den Bosch, Maurice A. A. J. ;
Viergever, Max A. ;
de Jong, Hugo W. A. M. .
MEDICAL PHYSICS, 2013, 40 (11)
[10]   Quantitative Monte Carlo-Based 90Y SPECT Reconstruction [J].
Elschot, Mattijs ;
Lam, Marnix G. E. H. ;
van den Bosch, Maurice A. A. J. ;
Viergever, Max A. ;
de Jong, Hugo W. A. M. .
JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (09) :1557-1563