Stability and Reactivity: Positive and Negative Aspects for Nanoparticle Processing

被引:325
作者
Xu, Liang [1 ]
Liang, Hai-Wei [1 ]
Yang, Yuan [1 ]
Yu, Shu-Hong [1 ]
机构
[1] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei Natl Res Ctr Phys Sci Microscale,CAS Ctr Ex, Div Nanomat & Chem,Hefei Sci Ctr CAS,Dept Chem, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
PEROVSKITE SOLAR-CELLS; ORGANIC HYBRID SEMICONDUCTOR; LARGE-SCALE SYNTHESIS; NANOSTRUCTURED ANODE MATERIALS; SHAPE-CONTROLLED SYNTHESIS; OXYGEN REDUCTION REACTION; TRANSITION-METAL OXIDES; GOLD NANOPARTICLES; LITHIUM-ION; LIGAND-EXCHANGE;
D O I
10.1021/acs.chemrev.7b00208
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoparticles exist far from the equilibrium state due to their high surface energy. Nanoparticles are therefore extremely unstable and easily change themselves or react with active substances to reach a relatively stable state in some cases. This causes desired changes or undesired changes to nanoparticles and thus makes them exhibit a high reactivity and a poor stability. Such dual nature (poor stability and high reactivity) of nanoparticles may result in both negative and positive effects for nanoparticle processing. However, the existing studies mainly focus on the high reactivity of nanoparticles, whereas their poor stability has been neglected or considered inconsequential. In fact, in some cases the unstable process, which is derived from the poor stability of nanoparticles, offers an opportunity to design and fabricate unique nanomaterials, such as by chemically transforming the "captured" intermediate nanostructures during a changing process, assembling destabilized nanoparticles into larger ordered assemblies, or shrinking/processing pristine materials into the desired size or shape via selective etching. In this review, we aim to present the stability and reactivity of nanoparticles on three levels: the foundation, concrete manifestations, and applications. We start with a brief introduction of dangling bonds and the surface chemistry of nanoparticles. Then, concrete manifestations of the poor stability and high reactivity of nanoparticles are presented from four perspectives: dispersion stability, thermal stability, structural stability, and chemical stability/reactivity. Next, we discuss some issues regarding the stability and reactivity of nanomaterials during applications. Finally, conclusions and perspectives on this field are presented.
引用
收藏
页码:3209 / 3250
页数:42
相关论文
共 376 条
[1]   Mechanistic Heteroaggregation of Gold Nanoparticles in a Wide Range of Solution Chemistry [J].
Afrooz, A. R. M. Nabiul ;
Khan, Iftheker A. ;
Hussain, Saber M. ;
Saleh, Navid B. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (04) :1853-1860
[2]  
Akcora P, 2009, NAT MATER, V8, P354, DOI [10.1038/NMAT2404, 10.1038/nmat2404]
[3]   Thermal stability of sputtered Cu films with nanoscale growth twins [J].
Anderoglu, O. ;
Misra, A. ;
Wang, H. ;
Zhang, X. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (09)
[4]   Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange [J].
Anderson, Bryan D. ;
Tracy, Joseph B. .
NANOSCALE, 2014, 6 (21) :12195-12216
[5]   Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding [J].
Anderson, Nicholas C. ;
Hendricks, Mark P. ;
Choi, Joshua J. ;
Owen, Jonathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (49) :18536-18548
[6]   Review of thermal stability of nanomaterials [J].
Andrievski, R. A. .
JOURNAL OF MATERIALS SCIENCE, 2014, 49 (04) :1449-1460
[7]   Stability of nanostructured materials [J].
Andrievski, RA .
JOURNAL OF MATERIALS SCIENCE, 2003, 38 (07) :1367-1375
[8]   In Situ Study of the Gas-Phase Electrolysis of Water on Platinum by NAP-XPS [J].
Arrigo, Rosa ;
Haevecker, Michael ;
Schuster, Manfred E. ;
Ranjan, Chinmoy ;
Stotz, Eugen ;
Knop-Gericke, Axel ;
Schloegl, Robert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (44) :11660-11664
[9]   The stabilization of nanocrystalline copper by zirconium [J].
Atwater, Mark A. ;
Scattergood, Ronald O. ;
Koch, Carl C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 559 :250-256
[10]   Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro [J].
Auffan, Melanie ;
Rose, Jerome ;
Wiesner, Mark R. ;
Bottero, Jean-Yves .
ENVIRONMENTAL POLLUTION, 2009, 157 (04) :1127-1133