High Accuracy 2D-DOA Estimation for Conformal Array Using PARAFAC

被引:16
|
作者
Wan, Liangtian [1 ]
Si, Weijian [1 ]
Liu, Lutao [1 ]
Tian, Zuoxi [2 ]
Feng, Naixing [3 ]
机构
[1] Harbin Engn Univ, Dept Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Sci & Technol Underwater Test & Control Lab, Dalian 116013, Peoples R China
[3] Xiamen Univ, Inst Electromagnet & Acoust, Xiamen 361005, Peoples R China
基金
美国国家科学基金会;
关键词
PATTERN SYNTHESIS; ANTENNA; POLARIZATION; ALGORITHM; OPTIMIZATION; FREQUENCY; DIRECTION; DOA;
D O I
10.1155/2014/394707
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the polarization diversity (PD) of element patterns caused by the varying curvature of the conformal carrier, the conventional direction-of-arrival (DOA) estimation algorithms could not be applied to the conformal array. In order to describe the PD of conformal array, the polarization parameter is considered in the snapshot data model. The paramount difficulty for DOA estimation is the coupling between the angle information and polarization parameter. Based on the characteristic of the cylindrical conformal array, the decoupling between the polarization parameter and DOA can be realized with a specially designed array structure. 2D-DOA estimation of the cylindrical conformal array is accomplished via parallel factor analysis (PARAFAC) theory. To avoid parameter pairing problem, the algorithm forms a PARAFAC model of the covariance matrices in the covariance domain. The proposed algorithm can also be generalized to other conformal array structures and nonuniform noise scenario. Cramer-Rao bound (CRB) is derived and simulation results with the cylindrical conformal array are presented to verify the performance of the proposed algorithm.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Joint 2D-DOD and 2D-DOA Estimation for Coprime EMVS-MIMO Radar
    Wang, Xianpeng
    Huang, Mengxing
    Wan, Liangtian
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (06) : 2950 - 2966
  • [32] Joint DOA and Frequency Estimation for Linear Array with Compressed Sensing PARAFAC Framework
    Li, Shu
    Sun, Zezhou
    Zhang, Xiaofei
    Chen, Weiyang
    Xu, Dazhuan
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2017, 26 (09)
  • [33] An Algorithm of Conformal Array DOA Estimation with Unknown Source Number
    Yang, Qun
    Cao, Xiang-yu
    Gao, Jun
    Li, Wen-qiang
    PROCEEDINGS OF 2014 3RD ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP 2014), 2014, : 502 - 505
  • [34] Joint DOA and polarization estimation algorithm for conformal array antenna
    Qi, Zi-Sen
    Guo, Ying
    Wang, Bu-Hong
    Wang, Yong-Liang
    Qi, Z.-S. (qizisen@163.com), 1600, Chinese Institute of Electronics (40): : 2562 - 2566
  • [35] DOA Estimation of Cylindrical Conformal Array Based on Geometric Algebra
    Wu, Minjie
    Zhang, Xiaofa
    Huang, Jingjian
    Yuan, Naichang
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2016, 2016
  • [36] A compressed 2D-DOA and polarization estimation algorithm for mmWave polarized massive MIMO systems
    Li, Liangliang
    Wang, Xianpeng
    Lan, Xiang
    Su, Ting
    Guo, Yuehao
    DIGITAL SIGNAL PROCESSING, 2024, 151
  • [37] DOA estimation in conformal arrays based on the nested array principles
    Alinezhad, Pourya
    Seydnejad, Saeid R.
    Abbasi-Moghadam, Dariush
    DIGITAL SIGNAL PROCESSING, 2016, 50 : 191 - 202
  • [38] Generalized Coprime Planar Array Geometry for 2-D DOA Estimation
    Zheng, Wang
    Zhang, Xiaofei
    Zhai, Hui
    IEEE COMMUNICATIONS LETTERS, 2017, 21 (05) : 1075 - 1078
  • [39] 2-D DOA estimation Using MUSIC algorithm with Uniform Circular Array
    Amine, Ihedrane Mohammed
    Seddik, Bri
    2016 4TH IEEE INTERNATIONAL COLLOQUIUM ON INFORMATION SCIENCE AND TECHNOLOGY (CIST), 2016, : 850 - 853
  • [40] High-Accuracy DOA Estimation for Non-Collinear Sparse Uniform Array
    Wang, Hongyong
    Chen, Xiaolong
    Deng, Weibo
    Zhang, Caisheng
    Xue, Yonghua
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 206 - 210