MICROARRAY MISSING DATA IMPUTATION USING REGRESSION

被引:5
作者
Bayrak, Tuncay [1 ]
Ogul, Hasan [1 ]
机构
[1] Baskent Univ, Comp Engn, Eskisehir Rd 20 Km Baglica Campus, Ankara, Turkey
来源
2017 13TH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (BIOMED) | 2017年
关键词
Gene expression prediction; missing value imputation; regression; PREDICTING GENE-EXPRESSION; CLASSIFICATION; CANCER; VALUES;
D O I
10.2316/P.2017.852-033
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Having missing values due to several experimental conditions is a common problem in analyzing the results of microarray experiments. Although many imputation methods exist, comparative studies based on regression based models are very limited. Particularly, Relevance Vector Machine (RVM), a recent regression method shown to be effective in various domains, has not been considered so far for missing value imputation in microarray data. In this study, we present a comparative study between regression based models, including linear regression, k-nearest neighbor regression and RVM that uses data obtained from breast, colon and prostate cancer tissues through the microarray technology. The leave-one-out (or Jackknife) procedure is applied for the validation. To measure the performance of the model we used Spearman correlation coefficient (CC). The results reveal that RVM with a Gaussian kernel outperforms other regression models in some cases.
引用
收藏
页码:68 / 73
页数:6
相关论文
共 21 条
[1]  
[Anonymous], 2012, MACHINE LEARNING PRO
[2]   A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm [J].
Aydilek, Ibrahim Berkan ;
Arslan, Ahmet .
INFORMATION SCIENCES, 2013, 233 :25-35
[3]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[4]   Predicting gene expression from sequence [J].
Beer, MA ;
Tavazoie, S .
CELL, 2004, 117 (02) :185-198
[5]   A global learning with local preservation method for microarray data imputation [J].
Chen, Ye ;
Wang, Aiguo ;
Ding, Huitong ;
Que, Xia ;
Li, Yabo ;
An, Ning ;
Jiang, Lili .
COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 77 :76-89
[6]   Measuring left-right and libertarian authoritarian values in the British electorate [J].
Evans, G ;
Heath, A ;
Lalljee, M .
BRITISH JOURNAL OF SOCIOLOGY, 1996, 47 (01) :93-112
[7]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[8]   Molecular profiles and clinical outcome of stage UICC II colon cancer patients [J].
Groene, Joern ;
Lenze, Dido ;
Jurinovic, Vindi ;
Hummel, Manuela ;
Seidel, Henrik ;
Leder, Gabriele ;
Beckmann, Georg ;
Sommer, Anette ;
Gruetzmann, Robert ;
Pilarsky, Christian ;
Mansmann, Ulrich ;
Buhr, Heinz-Johannes ;
Stein, Harald ;
Hummel, Michael .
INTERNATIONAL JOURNAL OF COLORECTAL DISEASE, 2011, 26 (07) :847-858
[9]   Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources [J].
Huang, Da Wei ;
Sherman, Brad T. ;
Lempicki, Richard A. .
NATURE PROTOCOLS, 2009, 4 (01) :44-57
[10]   Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks [J].
Khan, J ;
Wei, JS ;
Ringnér, M ;
Saal, LH ;
Ladanyi, M ;
Westermann, F ;
Berthold, F ;
Schwab, M ;
Antonescu, CR ;
Peterson, C ;
Meltzer, PS .
NATURE MEDICINE, 2001, 7 (06) :673-679