Novel prognostic genes and subclasses of acute myeloid leukemia revealed by survival analysis of gene expression data

被引:11
作者
Lai, Yanli [1 ]
OuYang, Guifang [1 ]
Sheng, Lixia [1 ]
Zhang, Yanli [1 ]
Lai, Binbin [1 ]
Zhou, Miao [1 ]
机构
[1] Ningbo First Hosp, Dept Hematol, 59 Liuting Rd, Ningbo 315000, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
The cancer genome atlas database; Acute myeloid leukemia; Weighted gene co-expression network analysis; Risk score; Overall survival; CANCER; ACTIVATION; RISK; AML;
D O I
10.1186/s12920-021-00888-0
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background Acute myeloid leukemia (AML) is biologically heterogeneous diseases with adverse prognosis. This study was conducted to find prognostic biomarkers that could effectively classify AML patients and provide guidance for treatment decision making. Methods Weighted gene co-expression network analysis was applied to detect co-expression modules and analyze their relationship with clinicopathologic characteristics using RNA sequencing data from The Cancer Genome Atlas database. The associations of gene expression with patients' mortality were investigated by a variety of statistical methods and validated in an independent dataset of 405 AML patients. A risk score formula was created based on a linear combination of five gene expression levels. Results The weighted gene co-expression network analysis detected 63 co-expression modules. The pink and darkred modules were negatively significantly correlated with overall survival of AML patients. High expression of FNDC3B, VSTM1 and CALR was associated with favourable overall survival, while high expression of PLA2G4A was associated with adverse overall survival. Hierarchical clustering analysis of FNDC3B, VSTM1, PLA2G4A, GOLGA3 and CALR uncovered four subgroups of AML patients. The cluster1 AML patients showed younger age, lower cytogenetics risk, higher frequency of NPM1 mutations and more favourable overall survival than cluster3 patients. The risk score was demonstrated to be an indicator of adverse prognosis in AML patients Conclusions The FNDC3B, VSTM1, PLA2G4A, GOLGA3, CALR and risk score may serve as key prognostic biomarkers for the stratification and ultimately guide rational treatment of AML patients.
引用
收藏
页数:10
相关论文
共 31 条
[1]  
[Anonymous], 2005, R PACKAGE VERSION
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   A four-gene LincRNA expression signature predicts risk in multiple cohorts of acute myeloid leukemia patients [J].
Beck, D. ;
Thoms, J. A. I. ;
Palu, C. ;
Herold, T. ;
Shah, A. ;
Olivier, J. ;
Boelen, L. ;
Huang, Y. ;
Chacon, D. ;
Brown, A. ;
Babic, M. ;
Hahn, C. ;
Perugini, M. ;
Zhou, X. ;
Huntly, B. J. ;
Schwarzer, A. ;
Klusmann, J-H ;
Berdel, W. E. ;
Woermann, B. ;
Buechner, T. ;
Hiddemann, W. ;
Bohlander, S. K. ;
To, L. B. ;
Scott, H. S. ;
Lewis, I. D. ;
D'Andrea, R. J. ;
Wong, J. W. H. ;
Pimanda, J. E. .
LEUKEMIA, 2018, 32 (02) :263-272
[4]   Monosomal karyotype in acute myeloid leukemia:: A better indicator of poor prognosis than a complex karyotype [J].
Breems, Dimitri A. ;
Van Putten, Wim L. J. ;
De Greef, Georgine E. ;
Van Zelderen-Bhola, Shama L. ;
Gerssen-Schoorl, Klasien B. J. ;
Mellink, Clemens H. M. ;
Nieuwint, Aggie ;
Jotterand, Martine ;
Hagemeijer, Anne ;
Beverloo, H. Berna ;
Lowenberg, Bob .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (29) :4791-4797
[5]   Identification of acquired copy number alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-resolution single-nucleotide polymorphism analysis [J].
Bullinger, L. ;
Kroenke, J. ;
Schoen, C. ;
Radtke, I. ;
Urlbauer, K. ;
Botzenhardt, U. ;
Gaidzik, V. ;
Cario, A. ;
Senger, C. ;
Schlenk, R. F. ;
Downing, J. R. ;
Holzmann, K. ;
Doehner, K. ;
Doehner, H. .
LEUKEMIA, 2010, 24 (02) :438-449
[6]   Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia:: results from Cancer and Leukemia Group B (CALGB 8461) [J].
Byrd, JC ;
Mrózek, K ;
Dodge, RK ;
Carroll, AJ ;
Edwards, CG ;
Arthur, DC ;
Pettenati, MJ ;
Patil, SR ;
Rao, KW ;
Watson, MS ;
Koduru, PRK ;
Moore, JO ;
Stone, RM ;
Mayer, RJ ;
Feldman, EJ ;
Davey, FR ;
Schiffer, CA ;
Larson, RA ;
Bloomfield, CD .
BLOOD, 2002, 100 (13) :4325-4336
[7]   Oncogenic Drivers in Myeloproliferative Neoplasms: From JAK2 to Calreticulin Mutations [J].
Cahu, Xavier ;
Constantinescu, Stefan N. .
CURRENT HEMATOLOGIC MALIGNANCY REPORTS, 2015, 10 (04) :335-343
[8]   Targeting FLT3 mutations in AML: review of current knowledge and evidence [J].
Daver, Naval ;
Schlenk, Richard F. ;
Russell, Nigel H. ;
Levis, Mark J. .
LEUKEMIA, 2019, 33 (02) :299-312
[9]   Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel [J].
Doehner, Hartmut ;
Estey, Elihu ;
Grimwade, David ;
Amadori, Sergio ;
Appelbaum, Frederick R. ;
Buechner, Thomas ;
Dombret, Herve ;
Ebert, Benjamin L. ;
Fenaux, Pierre ;
Larson, Richard A. ;
Levine, Ross L. ;
Lo-Coco, Francesco ;
Naoe, Tomoki ;
Niederwieser, Dietger ;
Ossenkoppele, Gert J. ;
Sanz, Miguel ;
Sierra, Jorge ;
Tallman, Martin S. ;
Tien, Hwei-Fang ;
Wei, Andrew H. ;
Lowenberg, Bob ;
Bloomfield, Clara D. .
BLOOD, 2017, 129 (04) :424-447
[10]   Acute myeloid leukaemia [J].
Estey, Elihu ;
Doehner, Hartmut .
LANCET, 2006, 368 (9550) :1894-1907