Essentially compressible modules and rings

被引:12
作者
Smith, P. F.
Vedadi, M. R. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math, Esfahan, Iran
[2] Inst Studies Theoret Phys & Math, Tehran, Iran
[3] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
关键词
D O I
10.1016/j.jalgebra.2005.08.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring with identity and let M be a unitary right R-module. Then M is essentially compressible provided M embeds in every essential submodule of M. It is proved that every non-singular essentially compressible module M is isomorphic to a submodule of a free module, and the converse holds in case R is semiprime right Goldie. In case R is a right FBN ring, M is essentially compressible if and only if M is subisomorphic to a direct sum of critical compressible modules. The ring R is right essentially compressible if and only if there exist a positive integer n and prime ideals Pi (1 <= i <= n) such that P-1 boolean AND(...)boolean AND P-n = 0 and the prime ring R/P-i is right essentially compressible for each 1 <= i <= n. It follows that a ring R is semiprime right Goldie if and only if R is a right essentially compressible ring with at least one uniform right ideal. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:812 / 831
页数:20
相关论文
共 9 条
  • [1] The ore condition for polynomial and power series rings
    Cedo, F
    Herbera, D
    [J]. COMMUNICATIONS IN ALGEBRA, 1995, 23 (14) : 5131 - 5159
  • [2] Chatters AW, 1980, Rings with Chain Conditions, volume 44 of Research Notes in Mathematics
  • [3] DUNG N. V., 1994, EXTENDING MODULES
  • [4] Goodearl K.R., 1989, LONDON MATH SOC STUD, V16
  • [5] Jategaonkar A. V, 1986, LONDON MATH SOC LECT, V98
  • [6] Lam T. Y., 1998, GRAD TEXTS MATH, V139
  • [7] SOME CHARACTERIZATIONS OF SEMIPRIME GOLDIE RINGS
    LOPEZPERMOUTH, SR
    RIZVI, ST
    YOUSIF, MF
    [J]. GLASGOW MATHEMATICAL JOURNAL, 1993, 35 : 357 - 365
  • [8] McConnell J.C., 1987, NONCOMMUTATIVE NOETH
  • [9] WEAKLY PRIMITIVE RINGS
    ZELMANOWITZ, J
    [J]. COMMUNICATIONS IN ALGEBRA, 1981, 9 (01) : 23 - 45