Simulation of long-term direct aerosol radiative forcing over the arctic within the framework of the iAREA project

被引:9
作者
Markowicz, K. M. [1 ]
Lisok, J. [1 ]
Xian, P. [2 ]
机构
[1] Univ Warsaw, Fac Phys, Inst Geophys, PL-02093 Warsaw, Poland
[2] Naval Res Lab, Marine Meteorol Div, Monterey, CA USA
关键词
Aerosol; Absorbing aerosol; Radiative forcing; Aerosol optical depth; Single scattering albedo; BLACK CARBON; OPTICAL-PROPERTIES; VERTICAL PROFILES; DATA ASSIMILATION; BOUNDARY-LAYER; IN-SITU; CLIMATE; TRANSPORT; REMOTE; VARIABILITY;
D O I
10.1016/j.atmosenv.2020.117882
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents the climatology of aerosol optical properties and radiative forcing over the Arctic obtained within the framework of the iAREA (impact of absorbing aerosols on radiative forcing in the European Arctic) project. The presented data were obtained from the Navy Aerosol Analysis and Prediction System (NAAPS) and the Fu-Liou radiative transfer model. NAAPS was used to simulate particle concentration and aerosol optical depth (AOD) at 1 degrees x 1 degrees spatial resolution. Direct aerosol radiative forcing (ARF) was calculated for clear-sky and all-sky conditions based on NAAPS reanalysis (with AOD assimilation) and satellite observations of surface and cloud properties. Long-term data (2003-2015) from NAAPS show that anthropogenic and biogenic aerosol, as well as sea salt, make the most important contribution to total AOD (35 and 30%, respectively). However, smoke (15%) and mineral dust (20%) cannot be neglected, especially during spring and summer. Results of numerical simulations indicate mean shortwave (SW) ARF for the whole Arctic (>70.5 degrees N) at the Earth's surface to be -4 W/m(2) for clear-sky and -1.3 W/m(2) for all-sky conditions, and at top of the atmosphere (TOA) -1.3 W/m(2) and -0.4 W/m(2), respectively. TOA ARF for anthropogenic and biogenic particles is only -0.1 W/m(2) for clear-sky and almost zero for all-sky conditions. For smoke and dust particles, SW ARF is very similar for both Earth's surface and TOA, as well as for clear-sky and all-sky conditions. For sea salt, SW ARF is the same at the surface and at TOA: 0.6 W/m(2) for clear-sky and -0.3 W/m(2) for all-sky conditions, because of negligible solar absorption. Cloud cover reduces surface cooling (direct clear-sky SW ARF) by a factor of 40% and shifts TOA SW ARF towards positive values.
引用
收藏
页数:22
相关论文
共 88 条
  • [1] Overview paper: New insights into aerosol and climate in the Arctic
    Abbatt, Jonathan P. D.
    Leaitch, W. Richard
    Aliabadi, Amir A.
    Bertram, Allan K.
    Blanchet, Jean-Pierre
    Boivin-Rioux, Aude
    Bozem, Heiko
    Burkart, Julia
    Chang, Rachel Y. W.
    Charette, Joannie
    Chaubey, Jai P.
    Christensen, Robert J.
    Cirisan, Ana
    Collins, Douglas B.
    Croft, Betty
    Dionne, Joelle
    Evans, Greg J.
    Fletcher, Christopher G.
    Gali, Marti
    Ghahreman, Roya
    Girard, Eric
    Gong, Wanmin
    Gosselin, Michel
    Gourdal, Margaux
    Hanna, Sarah J.
    Hayashida, Hakase
    Herber, Andreas B.
    Hesaraki, Sareh
    Hoor, Peter
    Huang, Lin
    Hussherr, Rachel
    Irish, Victoria E.
    Keita, Setigui A.
    Kodros, John K.
    Koellner, Franziska
    Kolonjari, Felicia
    Kunkel, Daniel
    Ladino, Luis A.
    Law, Kathy
    Levasseur, Maurice
    Libois, Quentin
    Liggio, John
    Lizotte, Martine
    Macdonald, Katrina M.
    Mahmood, Rashed
    Martin, Randall V.
    Mason, Ryan H.
    Miller, Lisa A.
    Moravek, Alexander
    Mortenson, Eric
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (04) : 2527 - 2560
  • [2] THE ARCTIC CRYOSPHERE IN THE TWENTY-FIRST CENTURY
    Barry, Roger G.
    [J]. GEOGRAPHICAL REVIEW, 2017, 107 (01) : 69 - 88
  • [3] Bounding the role of black carbon in the climate system: A scientific assessment
    Bond, T. C.
    Doherty, S. J.
    Fahey, D. W.
    Forster, P. M.
    Berntsen, T.
    DeAngelo, B. J.
    Flanner, M. G.
    Ghan, S.
    Kaercher, B.
    Koch, D.
    Kinne, S.
    Kondo, Y.
    Quinn, P. K.
    Sarofim, M. C.
    Schultz, M. G.
    Schulz, M.
    Venkataraman, C.
    Zhang, H.
    Zhang, S.
    Bellouin, N.
    Guttikunda, S. K.
    Hopke, P. K.
    Jacobson, M. Z.
    Kaiser, J. W.
    Klimont, Z.
    Lohmann, U.
    Schwarz, J. P.
    Shindell, D.
    Storelvmo, T.
    Warren, S. G.
    Zender, C. S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) : 5380 - 5552
  • [4] A technology-based global inventory of black and organic carbon emissions from combustion
    Bond, TC
    Streets, DG
    Yarber, KF
    Nelson, SM
    Woo, JH
    Klimont, Z
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D14) : D14203
  • [5] Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions
    Bourgeois, Quentin
    Bey, Isabelle
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [6] Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980
    Breider, Thomas J.
    Mickley, Loretta J.
    Jacob, Daniel J.
    Ge, Cui
    Wang, Jun
    Sulprizio, Melissa Payer
    Croft, Betty
    Ridley, David A.
    McConnell, Joseph R.
    Sharma, Sangeeta
    Husain, Liaquat
    Dutkiewicz, Vincent A.
    Eleftheriadis, Konstantinos
    Skov, Henrik
    Hopke, Phillip K.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (06) : 3573 - 3594
  • [7] SOOT IN THE ARCTIC SNOWPACK - A CAUSE FOR PERTURBATIONS IN RADIATIVE-TRANSFER
    CLARKE, AD
    NOONE, KJ
    [J]. ATMOSPHERIC ENVIRONMENT, 1985, 19 (12) : 2045 - 2053
  • [8] Accelerated decline in the Arctic Sea ice cover
    Comiso, Josefino C.
    Parkinson, Claire L.
    Gersten, Robert
    Stock, Larry
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (01)
  • [9] Diehl T., 2012, Atmos. Chem. Phys. Discuss, V12, P24895, DOI DOI 10.5194/ACPD-12-24895-2012
  • [10] An overview of black carbon deposition and its radiative forcing over the Arctic
    Dou Ting-Feng
    Xiao Cun-De
    [J]. ADVANCES IN CLIMATE CHANGE RESEARCH, 2016, 7 (03) : 115 - 122