Nonlinear Evolution of the Whistler Heat Flux Instability

被引:41
作者
Kuzichev, Ilya, V [1 ,2 ]
Vasko, Ivan Y. [2 ,3 ]
Soto-Chavez, Angel Rualdo [1 ]
Tong, Yuguang [3 ,4 ]
Artemyev, Anton, V [2 ,5 ]
Bale, Stuart D. [3 ,4 ]
Spitkovsky, Anatoly [6 ]
机构
[1] New Jersey Inst Technol, Newark, NJ 07102 USA
[2] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia
[3] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90065 USA
[6] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
instabilities; plasmas; solar wind; waves; SOLAR-WIND; COOLING FLOWS; WAVES; CONSTRAINTS; CLUSTERS;
D O I
10.3847/1538-4357/ab3290
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use the one-dimensional TRISTAN-MP particle-in-cell code to model the nonlinear evolution of the whistler heat flux instability (WHFI) that was proposed by Gary et al. and Gary & Li to regulate the electron heat flux in the solar wind and astrophysical plasmas. The simulations are initialized with electron velocity distribution functions typical for the solar wind. We perform a set of simulations at various initial values of the electron heat flux and beta(e). The simulations show that parallel whistler waves produced by the WHFI saturate at amplitudes consistent with the spacecraft measurements. The simulations also reproduce the correlations of the saturated whistler wave amplitude with the electron heat flux and beta(e) revealed in the spacecraft measurements. The major result is that parallel whistler waves produced by the WHFI do not significantly suppress the electron heat flux. The presented simulations indicate that coherent parallel whistler waves observed in the solar wind are unlikely to regulate the heat flux of solar wind electrons.
引用
收藏
页数:9
相关论文
共 74 条
[1]   Near-Earth Solar Wind: Plasma Characteristics From ARTEMIS Measurements [J].
Artemyev, A., V ;
Angelopoulos, V ;
McTiernan, J. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (12) :9955-9962
[2]   ELECTRON HEAT CONDUCTION IN THE SOLAR WIND: TRANSITION FROM SPITZER-HARM TO THE COLLISIONLESS LIMIT [J].
Bale, S. D. ;
Pulupa, M. ;
Salem, C. ;
Chen, C. H. K. ;
Quataert, E. .
ASTROPHYSICAL JOURNAL LETTERS, 2013, 769 (02)
[3]   Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence [J].
Bale, SD ;
Kellogg, PJ ;
Mozer, FS ;
Horbury, TS ;
Reme, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[4]   THE ROLE OF HEAT-CONDUCTION IN THE COOLING FLOWS OF GALAXY CLUSTERS [J].
BERTSCHINGER, E ;
MEIKSIN, A .
ASTROPHYSICAL JOURNAL, 1986, 306 (01) :L1-L5
[5]  
BREIZMAN BN, 1970, SOV PHYS JETP-USSR, V30, P759
[6]   Nature of Subproton Scale Turbulence in the Solar Wind [J].
Chen, C. H. K. ;
Boldyrev, S. ;
Xia, Q. ;
Perez, J. C. .
PHYSICAL REVIEW LETTERS, 2013, 110 (22)
[7]   EVAPORATION OF SPHERICAL CLOUDS IN A HOT GAS .1. CLASSICAL AND SATURATED MASS-LOSS RATES [J].
COWIE, LL ;
MCKEE, CF .
ASTROPHYSICAL JOURNAL, 1977, 211 (01) :135-146
[8]   EMPIRICAL CONSTRAINTS ON PROTON AND ELECTRON HEATING IN THE FAST SOLAR WIND [J].
Cranmer, Steven R. ;
Matthaeus, William H. ;
Breech, Benjamin A. ;
Kasper, Justin C. .
ASTROPHYSICAL JOURNAL, 2009, 702 (02) :1604-1614
[9]   Suprathermal electron isotropy in high-beta solar wind and its role in heat flux dropouts [J].
Crooker, NU ;
Larson, DE ;
Kahler, SW ;
Lamassa, SM ;
Spence, HE .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (12) :21-1
[10]   Electron heat flow in the solar corona: Implications of non-Maxwellian velocity distributions, the solar gravitational field, and Coulomb collisions [J].
Dorelli, John C. ;
Scudder, Jack D. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A7)