The number of extensions of a number field with fixed degree and bounded discriminant

被引:59
作者
Ellenberg, Jordan S. [1 ]
Venkatesh, Akshay
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] NYU, Courant Inst Math Sci, New York, NY USA
关键词
D O I
10.4007/annals.2006.163.723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an upper bound on the number of extensions of a fixed number field of prescribed degree and discriminant <= X; these bounds improve on work of Schmidt. We also prove various related results, such as lower bounds for the number of extensions and upper bounds for Galois extensions.
引用
收藏
页码:723 / 741
页数:19
相关论文
共 21 条
[1]  
[Anonymous], P INT C MATH BEIJ 20
[2]  
BELOLIPETSKY M, MATHGR0501198
[3]   The density of discriminants of quartic rings and fields [J].
Bhargava, M .
ANNALS OF MATHEMATICS, 2005, 162 (02) :1031-1063
[4]  
BHARGAVA M, IN PRESS ANN MATH
[5]  
COHEN SD, 1981, P LOND MATH SOC, V43, P227
[6]  
DATSKOVSKY B, 1988, J REINE ANGEW MATH, V386, P116
[7]   DENSITY OF DISCRIMINATS OF CUBIC FIELDS .2. [J].
DAVENPORT, H ;
HEILBRONN, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 322 (1551) :405-+
[8]  
DEJONG AJ, COMMUNICATION
[9]  
Ellenberg JS, 2005, PROG MATH, V235, P151
[10]  
Granville A, 1998, INT MATH RES NOTICES, V1998, P991