Detecting the mass and position of an adsorbate on a drum resonator

被引:16
作者
Zhang, Y. [1 ]
Zhao, Y. P. [1 ]
机构
[1] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2014年 / 470卷 / 2170期
基金
中国国家自然科学基金;
关键词
circular membrane; resonant frequencies; resonator sensor; inverse problem; graphene; GRAPHENE SHEETS; NANOMECHANICAL RESONATORS; MONOLAYER GRAPHENE; SUSPENDED GRAPHENE; SINGLE; MOLECULES; MEMBRANES; NANOTUBE; SENSORS; SPECTROMETRY;
D O I
10.1098/rspa.2014.0418
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The resonant frequency shifts of a circular membrane caused by an adsorbate are the sensing mechanism for a drum resonator. The adsorbate mass and position are the two major (unknown) parameters determining the resonant frequency shifts. There are infinite combinations of mass and position which can cause the same shift of one resonant frequency. Finding the mass and position of an adsorbate from the experimentally measured resonant frequencies forms an inverse problem. This study presents a straightforward method to determine the adsorbate mass and position by using the changes of two resonant frequencies. Because detecting the position of an adsorbate can be extremely difficult, especially when the adsorbate is as small as an atom or a molecule, this new inverse problem-solving method should be of some help to the mass resonator sensor application of detecting a single adsorbate. How to apply this method to the case of multiple adsorbates is also discussed.
引用
收藏
页数:15
相关论文
共 52 条
[41]  
Sagan H., 1989, BOUNDARY EIGENVALUE
[42]   Detection of individual gas molecules adsorbed on graphene [J].
Schedin, F. ;
Geim, A. K. ;
Morozov, S. V. ;
Hill, E. W. ;
Blake, P. ;
Katsnelson, M. I. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (09) :652-655
[43]  
Timoshenko S., 1937, Vibration Problems in Engineering, V2nd. ed.
[44]   Bending Rigidity and Gaussian Bending Stiffness of Single-Layered Graphene [J].
Wei, Yujie ;
Wang, Baoling ;
Wu, Jiangtao ;
Yang, Ronggui ;
Dunn, Martin L. .
NANO LETTERS, 2013, 13 (01) :26-30
[45]  
Wu JS, 1997, J SOUND VIB, V200, P179, DOI 10.1006/jsvi.1996.0697
[46]   Resonance-mode effect on microcantilever mass-sensing performance in air [J].
Xia, Xiaoyuan ;
Li, Xinxin .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (07)
[47]   Determining the effects of surface elasticity and surface stress by measuring the shifts of resonant frequencies [J].
Zhang, Y. ;
Zhuo, L. J. ;
Zhao, H. S. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2159)
[48]   Multi-modal analysis on the intermittent contact dynamics of atomic force microscope [J].
Zhang, Y. ;
Murphy, K. D. .
JOURNAL OF SOUND AND VIBRATION, 2011, 330 (23) :5569-5582
[49]   Determining the adsorption-induced surface stress and mass by measuring the shifts of resonant frequencies [J].
Zhang, Yin .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 194 :169-175
[50]   Eigenfrequency Computation of Beam/Plate Carrying Concentrated Mass/Spring [J].
Zhang, Yin .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2011, 133 (02)