Buckling transitions and soft-phase invasion of two-component icosahedral shells

被引:7
|
作者
Emanuel, Marc D. [1 ,2 ]
Cherstvy, Andrey G. [1 ,3 ]
Metzler, Ralf [3 ]
Gompper, Gerhard [1 ]
机构
[1] Forschungszentrum Julich, Inst Biol Informat Proc, Theoret Phys Living Matter, D-52425 Julich, Germany
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[3] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
关键词
Domes; -; Buckling; Viruses;
D O I
10.1103/PhysRevE.102.062104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
What is the optimal distribution of two types of crystalline phases on the surface of icosahedral shells, such as of many viral capsids? We here investigate the distribution of a thin layer of soft material on a crystalline convex icosahedral shell. We demonstrate how the shapes of spherical viruses can be understood from the perspective of elasticity theory of thin two-component shells. We develop a theory of shape transformations of an icosahedral shell upon addition of a softer, but still crystalline, material onto its surface. We show how the soft component "invades" the regions with the highest elastic energy and stress imposed by the 12 topological defects on the surface. We explore the phase diagram as a function of the surface fraction of the soft material, the shell size, and the incommensurability of the elastic moduli of the rigid and soft phases. We find that, as expected, progressive filling of the rigid shell by the soft phase starts from the most deformed regions of the icosahedron. With a progressively increasing soft-phase coverage, the spherical segments of domes are filled first (12 vertices of the shell), then the cylindrical segments connecting the domes (30 edges) are invaded, and, ultimately, the 20 flat faces of the icosahedral shell tend to be occupied by the soft material. We present a detailed theoretical investigation of the first two stages of this invasion process and develop a model of morphological changes of the cone structure that permits noncircular cross sections. In conclusion, we discuss the biological relevance of some structures predicted from our calculations, in particular for the shape of viral capsids.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase
    Neumann, Rebecca
    Bastian, Peter
    Ippisch, Olaf
    COMPUTATIONAL GEOSCIENCES, 2013, 17 (01) : 139 - 149
  • [42] Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase
    Rebecca Neumann
    Peter Bastian
    Olaf Ippisch
    Computational Geosciences, 2013, 17 : 139 - 149
  • [43] The stationary Boltzmann equation for a two-component gas for soft forces in the slab
    Brull, Stephane
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (14) : 1653 - 1666
  • [44] The decoupling of the glass transitions in the two-component p-spin spherical model
    Ikeda, Harukuni
    Ikeda, Atsushi
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [45] Kinetic roughening and phase ordering in the two-component growth model
    Kotrla, M
    Predota, M
    Slanina, F
    SURFACE SCIENCE, 1998, 402 (1-3) : 249 - 252
  • [46] A Phase-Modulated Two-Component Pulse in a Dispersive Medium
    G. T. Adamashvili
    Optics and Spectroscopy, 2019, 127 : 865 - 870
  • [47] Phase diagram of a two-component Fermi gas with resonant interactions
    Shin, Yong-Il
    Schunck, Christian H.
    Schirotzek, Andre
    Ketterle, Wolfgang
    NATURE, 2008, 451 (7179) : 689 - U1
  • [48] Decoding the physical principles of two-component biomolecular phase separation
    Zhang, Yaojun
    Xu, Bin
    Weiner, Benjamin G.
    Meir, Yigal
    Wingreen, Ned S.
    ELIFE, 2021, 10
  • [49] Phase behavior of two-component lipid membranes: Theory and experiments
    Kamal, Md. Arif
    Pal, Antara
    Raghunathan, V. A.
    Rao, Madan
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [50] Nonequilibrium phenomena in the phase separation of a two-component lipid bilayer
    de Almeida, RFM
    Loura, LMS
    Fedorov, A
    Prieto, M
    BIOPHYSICAL JOURNAL, 2002, 82 (02) : 823 - 834