Role of Co3O4 in improving the hydrogen storage properties of a LiBH4-2LiNH2 composite

被引:25
|
作者
Zhang, Yu
Liu, Yongfeng [1 ]
Pang, Yuepeng
Gao, Mingxia
Pan, Hongge
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Zhejiang, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
AMMONIA-BORANE; LITHIUM AMIDE; SYSTEM; DESORPTION; RELEASE; LIB0.33N0.67H2.67; DEHYDROGENATION; NANOPARTICLES; BOROHYDRIDE; HYDROLYSIS;
D O I
10.1039/c4ta01422g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Adding a small amount of Co3O4 significantly reduces the operating temperatures of dehydrogenation and improves the hydrogen storage reversibility of the LiBH4-2LiNH(2) system. The LiBH4-2LiNH(2)-0.05/3Co(3)O(4) composite desorbs similar to 9.9 wt% hydrogen by a four-step reaction with a 96 degrees C reduction in the midpoint temperature with respect to the pristine sample. The first and third steps of the dehydrogenation of the 0.05/3Co(3)O(4)-added sample are endothermic in nature, which is different from the pristine sample. Upon thermal dehydrogenation, the Co3O4 additive undergoes a series of chemical transformations and finally converts to the metallic Co, which is responsible for the improved thermodynamics and kinetics of the Co3O4-added sample. More importantly, 1.7 wt% of hydrogen is recharged into the 0.05/3Co(3)O(4)-added system under 110 bar hydrogen at 220 degrees C, which is superior to the pristine system.
引用
收藏
页码:11155 / 11161
页数:7
相关论文
共 50 条
  • [41] Improved hydrogen sorption kinetics of compacted LiNH 2-LiH based small hydrogen storage tank by doping with TiF 4 and MWCNTs
    Sitthiwet, Chongsutthamani
    Plerdsranoy, Praphatsorn
    Dansirima, Palmarin
    Eiamlamai, Priew
    Utke, Oliver
    Utke, Rapee
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 832
  • [42] Hydrogen storage behavior of LiBH4 improved by the confinement of hierarchical porous ZnO/ZnCo2O4 nanoparticles
    Xu, Xiaohong
    Zang, Lei
    Zhao, Yaran
    Zhao, Yan
    Wang, Yijing
    Jiao, Lifang
    JOURNAL OF POWER SOURCES, 2017, 359 : 134 - 141
  • [43] Fundamental Material Properties of the 2LiBH4-MgH2 Reactive Hydride Composite for Hydrogen Storage: (I) Thermodynamic and Heat Transfer Properties
    Jepsen, Julian
    Milanese, Chiara
    Puszkiel, Julian
    Girella, Alessandro
    Schiavo, Benedetto
    Lozano, Gustavo A.
    Capurso, Giovanni
    von Colbe, Jose M. Bellosta
    Marini, Amedeo
    Kabelac, Stephan
    Dornheim, Martin
    Klassen, Thomas
    ENERGIES, 2018, 11 (05)
  • [44] Material properties and empirical rate equations for hydrogen sorption reactions in 2 LiNH2-1.1 MgH2-0.1 LiBH4-3 wt.% ZrCoH3
    Buerger, I.
    Hu, J. J.
    Vitillo, J. G.
    Kalantzopoulos, G. N.
    Deledda, S.
    Fichtner, M.
    Baricco, M.
    Linder, M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (16) : 8283 - 8292
  • [45] CNT addition to the LiBH4-MgH2 composite: the effect of milling sequence on the hydrogen cycling properties
    Cova, F.
    Gennari, F. C.
    Larochette, P. Arneodo
    RSC ADVANCES, 2015, 5 (109) : 90014 - 90021
  • [46] Molten salt synthesis and energy storage studies on CuCo2O4 and CuO•Co3O4
    Reddy, M. V.
    Yu, Cai
    Jiahuan, Fan
    Loh, Kian Ping
    Chowdari, B. V. R.
    RSC ADVANCES, 2012, 2 (25): : 9619 - 9625
  • [47] Investigation on reversible hydrogen storage properties of Li3AlH6/2LiNH2 composite
    Yang, Jingkui
    Wang, Xinhua
    Mao, Jie
    Chen, Lixin
    Pan, Hongge
    Li, Shouquan
    Ge, Hongwei
    Chen, Changpin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 494 (1-2) : 58 - 61
  • [48] Effect of MoS2 on hydrogenation storage properties of LiBH4
    Liang, Dan
    Han, Shumin
    Wang, Jiasheng
    Zhang, Wei
    Zhao, Xin
    Zhao, Ziyang
    JOURNAL OF SOLID STATE CHEMISTRY, 2014, 211 : 21 - 24
  • [50] Enhanced Hydrogen Storage Properties and Reversibility of LiBH4 Confined in Two-Dimensional Ti3C2
    Zang, Lei
    Sun, Weiyi
    Liu, Song
    Huang, Yike
    Yuan, Huatang
    Tao, Zhanliang
    Wang, Yijing
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) : 19598 - 19604