Robust State Estimation of Fractional-order Complex Networks with Parametric Uncertainties

被引:0
作者
Chen Aimin [1 ,2 ]
Wang Xingwang [3 ]
Wang Junwei [4 ]
Liu Zhiguang [1 ,2 ]
Zhang Fengpan [1 ,2 ]
机构
[1] Henan Univ, Inst Appl Math, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Math & Informat Sci, Kaifeng 475004, Peoples R China
[3] Henan Univ, Construct Dept BASIC, Kaifeng 475004, Peoples R China
[4] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou 510006, Guangdong, Peoples R China
来源
2013 32ND CHINESE CONTROL CONFERENCE (CCC) | 2013年
基金
中国国家自然科学基金;
关键词
State Estimation; Fractional-order Derivative; Complex Networks; Parametric Uncertainty; Scalar Signals; SYNCHRONIZATION; SYSTEMS; CHAOS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the robust state estimation problem of a class of uncertain fractional-order complex networks with norm-bounded parameter uncertainties. Through available scalar output signals, our aim is to design a state estimator to estimate the network states such that the estimation error is globally robustly asymptotically stable for all admissible parameter uncertainties. Based on the stability theory of fractional-order differential systems, a sufficient condition for the existence of the desired estimator gain is derived, and then the explicit expression of such estimator gain is characterized in terms of the solution to linear matrix inequalities. Finally, simulation examples are provided to show the effectiveness of the designed estimator.
引用
收藏
页码:396 / 401
页数:6
相关论文
共 50 条
  • [41] Fractional-Order Robust Control Design under parametric uncertain approach
    Martins-Gomes, Marcus C.
    Ayres Junior, Florindo A. de C.
    da Costa Junior, Carlos T.
    de Bessa, Iury V.
    Farias, Nei Junior da S.
    de Medeiros, Renan L. P.
    Silva, Luiz E. S.
    Lucena Junior, Vicente F. de
    ISA TRANSACTIONS, 2024, 153 : 420 - 432
  • [42] Comparison principle and synchronization analysis of fractional-order complex networks with parameter uncertainties and multiple time delays
    Fan, Hongguang
    Zhu, Jihong
    Wen, Hui
    AIMS MATHEMATICS, 2022, 7 (07): : 12981 - 12999
  • [43] Synchronization in Fractional-Order Complex-Valued Delayed Neural Networks
    Zhang, Weiwei
    Cao, Jinde
    Chen, Dingyuan
    Alsaadi, Fuad E.
    ENTROPY, 2018, 20 (01)
  • [44] Cluster synchronization in fractional-order complex dynamical networks
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    Sun, Jian
    Ma, Tiedong
    PHYSICS LETTERS A, 2012, 376 (35) : 2381 - 2388
  • [45] Pinning Synchronization of Fractional-order Complex Networks With Arbitrary Fixed Topology
    Kong, Minxue
    Sun, Junwei
    Yang, Jun
    Liu, Peng
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 953 - 957
  • [46] Hybrid synchronization of coupled fractional-order complex networks
    Ma, Tiedong
    Zhang, Jun
    NEUROCOMPUTING, 2015, 157 : 166 - 172
  • [47] Outer synchronization of fractional-order complex dynamical networks
    Yang, Yong
    Wang, Yu
    Li, Tianzeng
    OPTIK, 2016, 127 (19): : 7395 - 7407
  • [48] Non-fragile state estimation for delayed fractional-order memristive neural networks
    Li, Ruoxia
    Gao, Xingbao
    Cao, Jinde
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 340 : 221 - 233
  • [49] Disturbance and uncertainty rejection performance for fractional-order complex dynamical networks
    Selvaraj, P.
    Kwon, O. M.
    Sakthivel, R.
    NEURAL NETWORKS, 2019, 112 : 73 - 84
  • [50] Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks
    Li, Hong-Li
    Hu, Cheng
    Jiang, Yao-Lin
    Wang, Zuolei
    Teng, Zhidong
    CHAOS SOLITONS & FRACTALS, 2016, 92 : 142 - 149