Robust State Estimation of Fractional-order Complex Networks with Parametric Uncertainties

被引:0
|
作者
Chen Aimin [1 ,2 ]
Wang Xingwang [3 ]
Wang Junwei [4 ]
Liu Zhiguang [1 ,2 ]
Zhang Fengpan [1 ,2 ]
机构
[1] Henan Univ, Inst Appl Math, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Math & Informat Sci, Kaifeng 475004, Peoples R China
[3] Henan Univ, Construct Dept BASIC, Kaifeng 475004, Peoples R China
[4] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou 510006, Guangdong, Peoples R China
来源
2013 32ND CHINESE CONTROL CONFERENCE (CCC) | 2013年
基金
中国国家自然科学基金;
关键词
State Estimation; Fractional-order Derivative; Complex Networks; Parametric Uncertainty; Scalar Signals; SYNCHRONIZATION; SYSTEMS; CHAOS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the robust state estimation problem of a class of uncertain fractional-order complex networks with norm-bounded parameter uncertainties. Through available scalar output signals, our aim is to design a state estimator to estimate the network states such that the estimation error is globally robustly asymptotically stable for all admissible parameter uncertainties. Based on the stability theory of fractional-order differential systems, a sufficient condition for the existence of the desired estimator gain is derived, and then the explicit expression of such estimator gain is characterized in terms of the solution to linear matrix inequalities. Finally, simulation examples are provided to show the effectiveness of the designed estimator.
引用
收藏
页码:396 / 401
页数:6
相关论文
共 50 条
  • [1] Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties
    Wong, W. K.
    Li, Hongjie
    Leung, S. Y. S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (12) : 4877 - 4890
  • [2] State Estimation for Fractional-Order Complex Dynamical Networks with Linear Fractional Parametric Uncertainty
    Li, Hongjie
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [3] Robust state estimation for fractional-order complex-valued delayed neural networks with interval parameter uncertainties: LMI approach
    Hu, Binxin
    Song, Qiankun
    Zhao, Zhenjiang
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 373
  • [4] State estimation for fractional-order neural networks
    Wang, Fei
    Yang, Yongqing
    Hu, Manfeng
    Xu, Xianyun
    OPTIK, 2015, 126 (23): : 4083 - 4086
  • [5] State estimation of fractional-order delayed memristive neural networks
    Bao, Haibo
    Cao, Jinde
    Kurths, Juergen
    NONLINEAR DYNAMICS, 2018, 94 (02) : 1215 - 1225
  • [6] Synchronization of fractional-order linear complex networks with directed coupling topology
    Fang, Qingxiang
    Peng, Jigen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 490 : 542 - 553
  • [7] Robust Stability Analysis of Fractional-Order Hopfield Neural Networks with Parameter Uncertainties
    Zhang, Shuo
    Yu, Yongguang
    Hu, Wei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [8] Synchronization of fractional-order linear complex networks
    Wang, Junwei
    Zeng, Caibin
    ISA TRANSACTIONS, 2015, 55 : 129 - 134
  • [9] Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers
    Delshad, Saleh Sayyad
    Asheghan, Mohammad Mostafa
    Beheshti, Mohammadtaghi Hamidi
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [10] Event-Triggered State Estimation for Fractional-Order Neural Networks
    Xu, Bingrui
    Li, Bing
    MATHEMATICS, 2022, 10 (03)