Ginsenoside RG1 enhances the paracrine effects of bone marrow-derived mesenchymal stem cells on radiation induced intestinal injury

被引:0
作者
Luo, Yujun [1 ,3 ]
Wang, Beibei [2 ,3 ]
Liu, Jianhua [4 ]
Ma, Faxin [1 ,5 ]
Luo, Dongling [1 ,6 ]
Zheng, Zhongwen [3 ]
Lu, Quan [1 ,3 ]
Zhou, Weijie [3 ]
Zheng, Yue [3 ]
Zhang, Chen [2 ,3 ]
Wang, Qiyi [1 ,3 ]
Sha, Weihong [2 ,3 ]
Chen, Hao [2 ,3 ]
机构
[1] Shantou Univ, Med Coll, Shantou 515041, Guangdong, Peoples R China
[2] Southern Med Univ, Sch Clin Med 2, Guangzhou 510515, Guangdong, Peoples R China
[3] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Gastroenterol, Guangzhou 510080, Guangdong, Peoples R China
[4] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Ctr Canc, Dept Oncol, Guangzhou 510080, Guangdong, Peoples R China
[5] Sun Yat Sen Univ, Affiliated Shantou Hosp, Shantou Cent Hosp, Dept Gastroenterol, Shantou 515041, Guangdong, Peoples R China
[6] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Cardiovasc Inst, Dept Cardiol, Guangzhou 510080, Guangdong, Peoples R China
来源
AGING-US | 2021年 / 13卷 / 01期
基金
中国国家自然科学基金;
关键词
mesenchymal stem cells; conditioned medium; heme oxygenase-1; ginsenoside RG1; radiation induced intestinal injury; HEME OXYGENASE-1 EXPRESSION; STROMAL CELLS; IN-VITRO; CONDITIONED MEDIA; BODY RADIATION; UP-REGULATION; SMALL-BOWEL; REGENERATION; PROTECTS; SURVIVAL;
D O I
暂无
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Content and aims: Ginsenoside RG1 (RG1) is thought to enhance proliferation and differentiation of stem cell, however, its role on paracrine efficacy of stem cell remains unclear. Here we examined if and how RG1 enhances the paracrine effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) on radiation induced intestinal injury (RIII). Method: Irradiated rats randomly received intraperitoneal injection of conditioned medium (CM) derived from non-activated BM-MSCs (MSC-CM) or BM-MSCs pre-activated by RG-1 (RG1-MSC-CM). Intestinal samples were collected, followed by the evaluation of histological and functional change, apoptosis, proliferation, inflammation, angiogenesis and stem cell regeneration. The effects of heme oxygenase-1 (HO-1) were investigated using HO-1 inhibitor or siRNA. Result: RG1 enhanced the paracrine efficacy of BM-MSCs partially through upregulation of HO-1. RG1-MSC-CM rather than MSC-CM significantly improved the survival and intestinal damage of irradiated rats via improvement of intestinal proliferation/apoptosis, inflammation, angiogenesis and stem cell regeneration in a HO-1 dependent mechanism. The mechanism for the superior paracrine efficacy of RG1-MSC-CM is related to a higher release of two pivotal cytokines VEGF and IL-6. Conclusion: Our study revealed that RG1 enhances paracrine effects of BM-MSCs on RIII, providing a novel method for maximizing the paracrine potential of MSCs.
引用
收藏
页码:1132 / 1152
页数:21
相关论文
共 50 条
  • [31] Therapeutic Potential of Adult Bone Marrow-Derived Mesenchymal Stem Cells in Diseases of the Skeleton
    Chanda, Diptiman
    Kumar, Sanjay
    Ponnazhagan, Selvarangan
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2010, 111 (02) : 249 - 257
  • [32] The plusses and minuses of bone marrow-derived mesenchymal stem cells in the treatment of liver cirrhosis
    Zhao, Yipu
    Huang, Shuai
    Zhu, Rongtao
    Sun, Yuling
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (06): : 8801 - 8811
  • [33] Effects of salinomycin on human bone marrow-derived mesenchymal stem cells in vitro
    Scherzed, A.
    Hackenberg, S.
    Froelich, K.
    Rak, K.
    Technau, A.
    Radeloff, A.
    Noeth, U.
    Koehler, C.
    Hagen, R.
    Kleinsasser, N.
    TOXICOLOGY LETTERS, 2013, 218 (03) : 207 - 214
  • [34] Bone Marrow-Derived Stem Cells and Radiation Response
    Greenberger, Joel S.
    Epperly, Michael
    SEMINARS IN RADIATION ONCOLOGY, 2009, 19 (02) : 133 - 139
  • [35] Effects of over-expression of HIF-1alpha in bone marrow-derived mesenchymal stem cells on traumatic brain injury
    Shi, Xiaodong
    Zhang, Guodong
    Sun, Huijuan
    Bai, Yunan
    Liu, Yuguang
    Zhang, Wei
    Xiao, Hang
    ENGINEERING IN LIFE SCIENCES, 2018, 18 (06): : 401 - 407
  • [36] Study of lead-induced neurotoxicity in cholinergic cells differentiated from bone marrow-derived mesenchymal stem cells
    Jafarzadeh, Emad
    Soodi, Maliheh
    Tiraihi, Taki
    Zarei, Mohammadhadi
    Qasemian-Lemraski, Mehdi
    TOXICOLOGY AND INDUSTRIAL HEALTH, 2022, 38 (10) : 655 - 664
  • [37] Caffeine alters the effects of bone marrow-derived mesenchymal stem cells on neutrophils
    Abbasi, Ardeshir
    Froushani, Seyyed Meysam Abtahi
    Delirezh, Norouz
    Mostafaei, Ali
    ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2018, 27 (04): : 463 - 468
  • [38] Radix Astragali-induced differentiation of rat bone marrow-derived mesenchymal stem cells
    Wang, Xinsheng
    Li, Haifeng
    Zhao, Ying
    Zhang, Xiaoli
    Bo, Aihua
    NEURAL REGENERATION RESEARCH, 2009, 4 (07) : 497 - 502
  • [39] Insights into bone marrow-derived mesenchymal stem cells safety for cutaneous repair and regeneration
    Wu, Yan
    Huang, Sha
    Enhe, Jirigala
    Fu, Xiaobing
    INTERNATIONAL WOUND JOURNAL, 2012, 9 (06) : 586 - 594
  • [40] Bone marrow-derived mesenchymal stem cells and the tumor microenvironment
    Scott A. Bergfeld
    Yves A. DeClerck
    Cancer and Metastasis Reviews, 2010, 29 : 249 - 261