On a Hasse principle for Mordell-Weil groups

被引:11
作者
Banaszak, Grzegorz [1 ]
机构
[1] Adam Mickiewicz Univ Poznan, Dept Math, PL-61614 Poznan, Poland
关键词
ABELIAN-VARIETIES; SUPPORT PROBLEM; REDUCTION MAPS; NUMBER-FIELDS; KUMMER-THEORY; K-THEORY; REPRESENTATIONS; FINITENESS;
D O I
10.1016/j.crma.2009.03.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we establish a Hasse principle concerning the linear dependence over Z of nontorsion points in the Mordell-Weil group of an abelian variety over a number field. To cite this article: G. Banaszak, C. R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:709 / 714
页数:6
相关论文
共 20 条
[1]  
Banaszak G, 2005, HOMOL HOMOTOPY APPL, V7, P1
[2]   Detecting linear dependence by reduction maps [J].
Banaszak, G ;
Gajda, W ;
Krason, P .
JOURNAL OF NUMBER THEORY, 2005, 115 (02) :322-342
[3]   Support problem for the intermediate Jacobians of l-adic representations [J].
Banaszak, G ;
Gajda, W ;
Krason, P .
JOURNAL OF NUMBER THEORY, 2003, 100 (01) :133-168
[4]   On reduction maps and support problem in K-theory and abelian varieties [J].
Baranczuk, Stefan .
JOURNAL OF NUMBER THEORY, 2006, 119 (01) :1-17
[5]  
Bogomolov F.A., 1980, C. R. Acad. Sci. Paris Sr. A-B, V290, pA701
[6]   The support problem and its elliptic analogue [J].
CorralesRodriganez, C ;
Schoof, R .
JOURNAL OF NUMBER THEORY, 1997, 64 (02) :276-290
[7]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[8]  
GAJDA W, J REINE ANG IN PRESS
[9]  
Hindry M., 2000, GRAD TEXT M, V201
[10]  
KATZ NM, 1981, INVENT MATH, V62, P481