On Nonlinear Nonlocal Systems of Reaction Diffusion Equations

被引:6
作者
Ahmad, B. [1 ]
Alhothuali, M. S. [1 ]
Alsulami, H. H. [1 ]
Kirane, M. [2 ]
Timoshin, S. [3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Univ La Rochelle, Pole Sci & Technol, Lab Math Images & Applicat, F-17031 La Rochelle, France
[3] UCL, Dept Math, London WC1E 6BT, England
关键词
GLOBAL EXISTENCE; TIME; BOUNDEDNESS;
D O I
10.1155/2014/804784
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The reaction diffusion system with anomalous diffusion and a balance law u(f) +(-Delta)(alpha/2)u = -f (u, V), V-t +(-Delta)(beta/2) V = f (mu, V), 0 < alpha, beta < 2, is con sidered. The existence of global solutions is proved in two situations: (i) a polynomial growth condition is imposed on the reaction term f when 0 < alpha <= beta <= 2; (ii) no growth condition is imposed on the reaction term f when 0 < beta <= alpha <= 2.
引用
收藏
页数:6
相关论文
共 22 条
[1]  
[Anonymous], 1993, INTEGRALS DERIVATIVE
[2]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[3]  
Blumenthal R. M., 1960, Trans. Amer. Math. Soc, V95, P263, DOI [DOI 10.1090/S0002-9947-1960-0119247-6, 10.1090/S0002-9947-1960-0119247-6]
[4]   Improved Duality Estimates and Applications to Reaction-Diffusion Equations [J].
Canizo, Jose A. ;
Desvillettes, Laurent ;
Fellner, Klemens .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (06) :1185-1204
[5]  
Collet P., 1996, Ann. Sci. Norm. Super. Pisa Cl. Sci. (4), V23, P625
[6]  
Douglas J.F., 2000, APPL FRACTIONAL CALC, P241
[7]   Qualitative properties of solutions to a nonlocal evolution system [J].
Fino, Ahmad Z. ;
Kirane, Mokhtar .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (09) :1125-1143
[8]   GLOBAL EXISTENCE AND BOUNDEDNESS FOR A CLASS OF INHOMOGENEOUS SEMILINEAR PARABOLIC-SYSTEMS [J].
FITZGIBBON, WE ;
MORGAN, J ;
SANDERS, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (09) :885-899
[9]   GLOBAL EXISTENCE AND BOUNDEDNESS IN REACTION-DIFFUSION SYSTEMS [J].
HOLLIS, SL ;
MARTIN, RH ;
PIERRE, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :744-761
[10]  
Kanel J. I., 2000, DIFFERENTIAL INTEGRA, V13, P255