A sequential Monte Carlo method for Bayesian face recognition

被引:0
作者
Matsui, Atsushi
Clippingdale, Simon
Matsumoto, Takashi
机构
[1] NHK Japan Broadcasting Corp, Japan Broadcasting Corp, Sci & Tech Res Lab, Setagaya Ku, Tokyo 1578510, Japan
[2] Waseda Univ, Dept Elect Engn & Biosci, Shinjuku Ku, Tokyo 1698555, Japan
来源
STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS | 2006年 / 4109卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a Sequential Monte Carlo (SMC) learning algorithm for Bayesian probability distributions that describe model parameters in a video face recognition system based on deformable template matching. The new algorithm achieves significantly improved robustness of recognition against facial expressions and speech movements by comparison with a baseline batch MCMC (Markov Chain Monte Carlo) algorithm, at no additional computational cost. Experimental results demonstrate the effectiveness and computational efficiency of the new algorithm.
引用
收藏
页码:578 / 586
页数:9
相关论文
共 10 条
[1]   An introduction to MCMC for machine learning [J].
Andrieu, C ;
de Freitas, N ;
Doucet, A ;
Jordan, MI .
MACHINE LEARNING, 2003, 50 (1-2) :5-43
[2]  
Clippingdale S., 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), P662, DOI 10.1109/ICIP.1999.821718
[3]  
CLIPPINGDALE S, 2000, P MVA2000 TOK JAP, P5
[4]  
Doucet A., 1998, CUEDFINFENGTR310
[5]  
LIU JS, 2001, MONTE CARLO STRATEGI, P53
[6]  
MacKay D, 2003, Information Theory, Inference, and Learning Algorithms
[7]  
Mardia K., 2009, DIRECTIONAL STAT
[8]  
MATSUI A, 2004, P ICPR2004, V3, P918
[9]  
Matsumoto T, 2005, AIP CONF PROC, V803, P129, DOI 10.1063/1.2149788
[10]  
WISKOTT L, 1996, TR9608 RUHR U I NEUR