M-Adaptation in the mimetic finite difference method

被引:15
作者
Gyrya, Vitaliy [1 ]
Lipnikov, Konstantin [1 ]
Manzini, Gianmarco [1 ,2 ]
Svyatskiy, Daniil [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA
[2] CNR, Ist Matemat Appl & Tecnol Informat, I-27100 Pavia, Italy
关键词
Mimetic discretization; unstructured polyhedral meshes; discrete maximum principles; numerical optimization; DISCRETE MAXIMUM PRINCIPLE; MULTIPOINT FLUX APPROXIMATION; TENSOR ARTIFICIAL VISCOSITY; DIFFUSION-PROBLEMS; VOLUME METHOD; UNSTRUCTURED GRIDS; INNER PRODUCTS; STOKES PROBLEM; TOPOLOGY OPTIMIZATION; CONVERGENCE ANALYSIS;
D O I
10.1142/S0218202514400053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mimetic finite difference method produces a family of schemes with equivalent properties such as the stencil size, stability region, and convergence order. Each member of this family is defined by a set of parameters which can be chosen locally for every mesh element. The number of parameters depends on the geometry of a particular mesh element. M-Adaptation is a new adaptation methodology that identifies a member of this family with additional (superior) properties compared to the other schemes in the family. We analyze the enforcement of the discrete maximum principles for the diffusion equation in the primal and dual forms, the reduction of numerical dispersion and anisotropy for the acoustic wave equation, and the optimization of the performance of multi-grid solvers.
引用
收藏
页码:1621 / 1663
页数:43
相关论文
共 130 条
[1]   A compact multipoint flux approximation method with improved robustness [J].
Aavatsmark, I. ;
Eigestad, G. T. ;
Mallison, B. T. ;
Nordbotten, J. M. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (05) :1329-1360
[2]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1717-1736
[3]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1700-1716
[4]  
[Anonymous], 1975, MATH SCI ENG
[5]   A MIMETIC DISCRETIZATION OF ELLIPTIC OBSTACLE PROBLEMS [J].
Antonietti, Paola F. ;
da Veiga, Lourenco Beirao ;
Verani, Marco .
MATHEMATICS OF COMPUTATION, 2013, 82 (283) :1379-1400
[6]   HIERARCHICAL A POSTERIORI ERROR ESTIMATORS FOR THE MIMETIC DISCRETIZATION OF ELLIPTIC PROBLEMS [J].
Antonietti, Paola F. ;
da Veiga, Lourenco Beirao ;
Lovadina, Carlo ;
Verani, Marco .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :654-675
[7]  
Arnold D., 2006, MATH ITS APPL, V142
[8]  
Berman A., 1994, NON NEGATIVE MATRICE
[9]   A second-order maximum principle preserving finite volume method for steady convection-diffusion problems [J].
Bertolazzi, E ;
Manzini, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2172-2199
[10]   A cell-centered second-order accurate finite volume method for convection-diffusion problems on unstructured meshes [J].
Bertolazzi, E ;
Manzini, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (08) :1235-1260