Modeling, simulation and validation of material flow on conveyor belts

被引:54
作者
Goettlich, Simone [1 ]
Hoher, Simon [2 ]
Schindler, Patrick [1 ]
Schleper, Veronika [3 ]
Verl, Alexander [2 ]
机构
[1] Univ Mannheim, Sch Business Informat & Math, D-68131 Mannheim, Germany
[2] Univ Stuttgart, Inst Control Engn Machine Tools & Mfg Units, D-70174 Stuttgart, Germany
[3] Univ Stuttgart, Inst Appl Anal & Numer Simulat, D-70569 Stuttgart, Germany
关键词
Particle simulation; Conservation laws with nonlocal flow; Numerical studies; COLLISION DETECTION; GRANULAR FLOW; DYNAMICS;
D O I
10.1016/j.apm.2013.11.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper a model comparison approach based on material flow systems is investigated that is divided into a microscopic and a macroscopic model scale. On the microscopic model scale particles are simulated using a model based on Newton dynamics borrowed from the engineering literature. Phenomenological observations lead to a hyperbolic partial differential equation on the macroscopic model scale. Suitable numerical algorithms are presented and both models are compared numerically and validated against real-data test settings. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3295 / 3313
页数:19
相关论文
共 33 条
[1]  
[Anonymous], 1998, P IMA C MATH SURF
[2]  
[Anonymous], 2009, 3 INT C CHANG AG REC
[3]   A model for the dynamics of large queuing networks and supply chains [J].
Armbruster, D ;
Degond, P ;
Ringhofer, C .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (03) :896-920
[4]   A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC [J].
Colombo, Rinaldo M. ;
Garavello, Mauro ;
Lecureux-Mercier, Magali .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (04)
[5]   NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS [J].
Colombo, Rinaldo M. ;
Lecureux-Mercier, Magali .
ACTA MATHEMATICA SCIENTIA, 2012, 32 (01) :177-196
[6]  
Coumans E., 2012, BULLET, V2, P80
[7]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[8]   A NEW APPROACH FOR A NONLOCAL, NONLINEAR CONSERVATION LAW [J].
Du, Qiang ;
Kamm, James R. ;
Lehoucq, R. B. ;
Parks, Michael L. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (01) :464-487
[9]  
Fischer U., 2010, Mechanical and Metal Trades Handbook
[10]  
Foster N, 2001, COMP GRAPH, P23, DOI 10.1145/383259.383261