共 18 条
Kinky breathers, multi-peak and multi-wave soliton solutions for the nonlinear propagation of Kundu-Eckhaus dynamical model
被引:14
|作者:
El-Rashidy, K.
[1
]
Seadawy, Aly R.
[2
]
机构:
[1] Taif Univ, Math Dept, Coll Arts & Sci, Ranyah, Saudi Arabia
[2] Taibah Univ, Math Dept, Fac Sci, Al Madinah Al Munawarah, Saudi Arabia
来源:
INTERNATIONAL JOURNAL OF MODERN PHYSICS B
|
2020年
/
34卷
/
32期
关键词:
Soliton solutions;
Kundu–
Eckhaus (KE) equation;
the logarithmic transformation method;
TRAVELING-WAVE SOLUTIONS;
STABILITY ANALYSIS;
EQUATION;
D O I:
10.1142/S0217979220503178
中图分类号:
O59 [应用物理学];
学科分类号:
摘要:
The multi-wave solutions for nonlinear Kundu-Eckhaus (KE) equation are obtained using logarithmic transformation and symbolic computation using the function method. Three-wave method, double exponential and homoclinic breather approach are used to get these solutions. We study the conflict between our results and considerably-known results and state that the solutions reached here are new. By specifying the suitable values for the parameter, the drawings of the solutions obtained are shown in this paper.
引用
收藏
页数:10
相关论文