Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores

被引:135
作者
Shi, Wenhui [1 ]
Li, Haibo [1 ]
Cao, Xiehong [2 ,3 ]
Leong, Zhi Yi [1 ]
Zhang, Jun [1 ,4 ]
Chen, Tupei [4 ]
Zhang, Hua [2 ]
Yang, Hui Ying [1 ]
机构
[1] Singapore Univ Technol & Design, Pillar Engn Prod Dev, Singapore 487372, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, Ctr Programmable Mat, Singapore 639798, Singapore
[3] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Zhejiang, Peoples R China
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
WATER DESALINATION; CARBON ELECTRODES; ENERGY; OXIDE; ELECTROSORPTION; COMPOSITE; TECHNOLOGY; SPONGE; FUTURE; NACL;
D O I
10.1038/srep18966
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to achieve optimal desalination during capacitive deionization (CDI), CDI electrodes should possess high electrical conductivity, large surface area, good wettability to water, narrow pore size distribution and efficient pathways for ion and electron transportation. In this work, we fabricated a novel CDI electrode based on a three-dimensional graphene (3DG) architecture by constructing interconnected graphene sheets with in-plane nanopores (NP-3DG). As compared to 3DG, NP-3DG features a larger specific surface area of 445 m(2) g(-1) and therefore the higher specific capacitance. The ultrahigh electrosorptive capacity of NP-3DG predicted from Langmuir isotherm is 17.1 mg g(-1) at a cell potential of 1.6V. This can be attributed to the interconnected macropores within the graphene networks and nanopores on graphene sheets. Both of macropores and nanopores are favorable for enhancing CDI peroformance by buffering ions to reduce the diffusion distances from the external electrolyte to the interior surfaces and enlarging the surface area.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? [J].
Anderson, Marc A. ;
Cudero, Ana L. ;
Palma, Jesus .
ELECTROCHIMICA ACTA, 2010, 55 (12) :3845-3856
[2]   Precision cutting and patterning of graphene with helium ions [J].
Bell, D. C. ;
Lemme, M. C. ;
Stern, L. A. ;
RWilliams, J. ;
Marcus, C. M. .
NANOTECHNOLOGY, 2009, 20 (45)
[3]   Recent applications of nanomaterials in water desalination: A critical review and future opportunities [J].
Daer, Sahar ;
Kharraz, Jehad ;
Giwa, Adewale ;
Hasan, Shadi Wajih .
DESALINATION, 2015, 367 :37-48
[4]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[5]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[6]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[7]   The Future of Seawater Desalination: Energy, Technology, and the Environment [J].
Elimelech, Menachem ;
Phillip, William A. .
SCIENCE, 2011, 333 (6043) :712-717
[8]   Electrosorption of inorganic salts from aqueous solution using carbon aerogels [J].
Gabelich, CJ ;
Tran, TD ;
Suffet, IH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (13) :3010-3019
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization [J].
Han, Linchen ;
Karthikeyan, K. G. ;
Anderson, Marc A. ;
Gregory, Kelvin B. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 430 :93-99