Estimation and prediction of a generalized mixed-effects model with t-process for longitudinal correlated binary data

被引:2
|
作者
Cao, Chunzheng [1 ]
He, Ming [1 ]
Shi, Jian Qing [2 ,3 ]
Liu, Xin [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
[2] Southern Univ Sci & Technol, Dept Stat & Data Sci, Coll Sci, Shenzhen, Peoples R China
[3] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne, Tyne & Wear, England
基金
中国国家自然科学基金;
关键词
Functional data; Heavy-tailed process; Prediction; Random-effects; Robustness;
D O I
10.1007/s00180-020-01057-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a generalized mixed-effects model based on t-process for longitudinal correlated binary data. The correlations among repeated binary outcomes are defined by a latent t-process, which provides a new framework on modeling nonlinear random- effects. The covariance kernel of the process can adaptively capture the subject-specific variations while the heavy-tails of the t-process enable robust inferences. We develop an efficient estimation procedure based on Monte Carlo EM algorithm and a prediction approach through conditional inference. Numerical studies indicate that the estimation and prediction based on the proposed model is robust against outliers compared with Gaussian model. We use the renal anemia and meteorological data as illustrative examples.
引用
收藏
页码:1461 / 1479
页数:19
相关论文
共 48 条
  • [41] Functional Mixed-Effects Modeling of Longitudinal Duchenne Muscular Dystrophy Electrical Impedance Myography Data Using State-Space Approach
    Kapur, Kush
    Sanchez, Benjamin
    Pacheck, Adam
    Darras, Basil
    Rutkove, Seward B.
    Selukar, Rajesh
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (06) : 1761 - 1768
  • [42] Mixed model analysis of censored longitudinal data with flexible random-effects density
    Vock, David M.
    Davidian, Marie
    Tsiatis, Anastasios A.
    Muir, Andrew J.
    BIOSTATISTICS, 2012, 13 (01) : 61 - 73
  • [43] Random Effects, Fixed Effects and Hausman's Test for the Generalized Mixed Regressive Spatial Autoregressive Panel Data Model
    Baltagi, Badi H.
    Liu, Long
    ECONOMETRIC REVIEWS, 2016, 35 (04) : 638 - 658
  • [44] Modeling the road degradation process: non-linear mixed effects models for correlation and heteroscedasticity of pavement longitudinal data
    Lorino, Tristan
    Lepert, Philippe
    Marion, Jean-Marie
    Khraibani, Hussein
    TRANSPORT RESEARCH ARENA 2012, 2012, 48 : 21 - 29
  • [45] Estimation, Testing, and Prediction Regions of the Fixed and Random Effects by Solving the Henderson's Mixed Model Equations Invited paper
    Witkovsky, Viktor
    MEASUREMENT SCIENCE REVIEW, 2012, 12 (06): : 234 - 248
  • [46] A Link between Machine Learning and Optimization in Ground-Motion Model Development: Weighted Mixed-Effects Regression with Data-Driven Probabilistic Earthquake Classification
    von Specht, Sebastian
    Cotton, Fabrice
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2020, 110 (06) : 2777 - 2800
  • [47] Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data
    Stijnen, Theo
    Hamza, Taye H.
    Ozdemir, Pinar
    STATISTICS IN MEDICINE, 2010, 29 (29) : 3046 - 3067
  • [48] Two-stage model for time-varying effects of discrete longitudinal covariates with applications in analysis of daily process data
    Yang, Hanyu
    Cranford, James A.
    Li, Runze
    Buu, Anne
    STATISTICS IN MEDICINE, 2015, 34 (04) : 571 - 581