Estimation and prediction of a generalized mixed-effects model with t-process for longitudinal correlated binary data
被引:2
|
作者:
Cao, Chunzheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
Cao, Chunzheng
[1
]
He, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
He, Ming
[1
]
Shi, Jian Qing
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Stat & Data Sci, Coll Sci, Shenzhen, Peoples R China
Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne, Tyne & Wear, EnglandNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
Shi, Jian Qing
[2
,3
]
Liu, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
Liu, Xin
[1
]
机构:
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
[2] Southern Univ Sci & Technol, Dept Stat & Data Sci, Coll Sci, Shenzhen, Peoples R China
[3] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne, Tyne & Wear, England
We propose a generalized mixed-effects model based on t-process for longitudinal correlated binary data. The correlations among repeated binary outcomes are defined by a latent t-process, which provides a new framework on modeling nonlinear random- effects. The covariance kernel of the process can adaptively capture the subject-specific variations while the heavy-tails of the t-process enable robust inferences. We develop an efficient estimation procedure based on Monte Carlo EM algorithm and a prediction approach through conditional inference. Numerical studies indicate that the estimation and prediction based on the proposed model is robust against outliers compared with Gaussian model. We use the renal anemia and meteorological data as illustrative examples.
机构:
Fudan Univ, Dept Stat, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Publ Hlth & Key Lab Publ Hlth Safety, Dept Biostat, Shanghai 200032, Peoples R China
Zhu, Zhongyi
Fung, Wing K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R ChinaFudan Univ, Sch Publ Hlth & Key Lab Publ Hlth Safety, Dept Biostat, Shanghai 200032, Peoples R China