Estimation and prediction of a generalized mixed-effects model with t-process for longitudinal correlated binary data

被引:2
|
作者
Cao, Chunzheng [1 ]
He, Ming [1 ]
Shi, Jian Qing [2 ,3 ]
Liu, Xin [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
[2] Southern Univ Sci & Technol, Dept Stat & Data Sci, Coll Sci, Shenzhen, Peoples R China
[3] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne, Tyne & Wear, England
基金
中国国家自然科学基金;
关键词
Functional data; Heavy-tailed process; Prediction; Random-effects; Robustness;
D O I
10.1007/s00180-020-01057-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a generalized mixed-effects model based on t-process for longitudinal correlated binary data. The correlations among repeated binary outcomes are defined by a latent t-process, which provides a new framework on modeling nonlinear random- effects. The covariance kernel of the process can adaptively capture the subject-specific variations while the heavy-tails of the t-process enable robust inferences. We develop an efficient estimation procedure based on Monte Carlo EM algorithm and a prediction approach through conditional inference. Numerical studies indicate that the estimation and prediction based on the proposed model is robust against outliers compared with Gaussian model. We use the renal anemia and meteorological data as illustrative examples.
引用
收藏
页码:1461 / 1479
页数:19
相关论文
共 48 条
  • [1] Estimation and prediction of a generalized mixed-effects model with t-process for longitudinal correlated binary data
    Chunzheng Cao
    Ming He
    Jian Qing Shi
    Xin Liu
    Computational Statistics, 2021, 36 : 1461 - 1479
  • [2] Mixed-effects Model For Classification And Prediction In Longitudinal Data Analysis
    Poddar, Mukund
    Harigovind, Gautam
    2018 INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND SYSTEMS BIOLOGY (BSB), 2018, : 36 - 39
  • [3] Nested Inverse Gaussian Mixed-Effects Model for Longitudinal Data
    Duan, Xing De
    Zhang, Shi
    Zhang, Wen Zhuan
    Wu, Ying
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY [ICICT-2019], 2019, 154 : 561 - 565
  • [4] A robust estimation for the extended t-process regression model
    Wang, Zhanfeng
    Li, Kai
    Shi, Jian Qing
    STATISTICS & PROBABILITY LETTERS, 2020, 157
  • [5] Linear mixed-effects model for longitudinal complex data with diversified characteristics
    Wang, Zhichao
    Wang, Huiwen
    Wang, Shanshan
    Lu, Shan
    Saporta, Gilbert
    JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING, 2020, 5 (02) : 105 - 124
  • [6] Simplex Mixed-Effects Models for Longitudinal Proportional Data
    Qiu, Zhenguo
    Song, Peter X. -K.
    Tan, Ming
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (04) : 577 - 596
  • [7] Generalized quasi-linear mixed-effects model
    Saigusa, Yusuke
    Eguchi, Shinto
    Komori, Osamu
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (07) : 1280 - 1291
  • [8] Generalized Estimation of the BLUP in Mixed-Effects Models: A Comparison with ML and REML
    Yu, Ching-Ray
    Zou, Kelly H.
    Carlsson, Martin O.
    Weerahandi, Samaradasa
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (03) : 694 - 704
  • [9] Estimation and prediction in linear mixed models with skew-normal random effects for longitudinal data
    Lin, Tsung I.
    Lee, Jack C.
    STATISTICS IN MEDICINE, 2008, 27 (09) : 1490 - 1507
  • [10] The prediction accuracy of dynamic mixed-effects models in clustered data
    Brian S. Finkelman
    Benjamin French
    Stephen E. Kimmel
    BioData Mining, 9