Theoretical Study of the Reaction Mechanism of Streptomyces coelicolor Type II Dehydroquinase

被引:13
作者
Blomberg, L. Mattias [1 ]
Mangold, Martina [2 ]
Mitchell, John B. O. [1 ]
Blumberger, Jochen [2 ]
机构
[1] Univ Cambridge, Unilever Ctr Mol Sci Informat, Cambridge CB2 1EW, England
[2] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
基金
瑞典研究理事会;
关键词
SHIKIMATE PATHWAY; ENOLATE INTERMEDIATE; INHIBITION; 3-DEHYDROQUINASE; PROTEIN;
D O I
10.1021/ct800480d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reaction mechanism of a type 11 dehydroquinase (DHQase) from Streptomyces coelicolor was investigated using molecular dynamics simulation and density functional theory (DFT) calculations. DHQase catalyzes the elimination of a water molecule from dehydroquinate (DHQ), a key step in the biosynthesis of aromatic amino acids in bacteria, fungi, and plants. In the DFT calculations, 10 models, containing up to 230 atoms, were used to investigate different proposals for the reaction mechanism, suggested on the basis of crystal structures and kinetic data. Probing the flexibility of the active site, molecular dynamics simulation reveals that deprotonated Tyr28 can act as the base that catalyzes the first reaction step, the proton abstraction of the pro-S proton at C2 of DHQ, and formation of the enolate intermediate. The computed barrier for the first transition state (TS1), 13-15 kcal/mol, is only slightly affected by the active site model used and is in good agreement with the corresponding experimental barrier of 13.4 kcal/mol for the rate-determining step. The previously proposed enol form of the intermediate is found to be significantly higher in energy than the enolate form and is thus thermodynamically not competitive. In the second and final reaction step, protonation of the hydroxyl group at C1 by His106 followed by water elimination, there is a substantial buildup of dipole moment due to the net transfer of a proton from His106 to Tyr28. A barrier for the second transition state (TS2) that fits well with the corresponding experimental barrier could only be found if the buildup of dipole moment is at least partly compensated during the second reaction step. We speculate that this could be facilitated by regeneration of the Tyr28 anion or by proton transfer to the vicinity of His106 before TS2 is reached. A revised mechanism for type 11 DHQase is discussed in light of the results of the present calculations.
引用
收藏
页码:1284 / 1294
页数:11
相关论文
共 39 条
[1]  
[Anonymous], 2016, GAUSSIAN 16 REV B01
[2]  
[Anonymous], 2006, AMBER9
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[5]   Modeling electron transfer in biochemistry:: A quantum chemical study of charge separation in Rhodobacter sphaeroides and photosystem II [J].
Blomberg, MRA ;
Siegbahn, PEM ;
Babcock, GT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (34) :8812-8824
[6]   A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics [J].
Cances, E ;
Mennucci, B ;
Tomasi, J .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08) :3032-3041
[7]  
CHAUDHURI S, 1991, BIOCHEM J, V275, P1
[8]   Ab initio study of ionic solutions by a polarizable continuum dielectric model [J].
Cossi, M ;
Barone, V ;
Mennucci, B ;
Tomasi, J .
CHEMICAL PHYSICS LETTERS, 1998, 286 (3-4) :253-260
[9]   Assessment of Gaussian-3 and density functional theories for a larger experimental test set [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (17) :7374-7383
[10]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593