Almost symmetric numerical semigroups with given Frobenius number and type

被引:5
作者
Branco, M. B. [1 ]
Ojeda, I [2 ]
Rosales, J. C. [3 ]
机构
[1] Univ Evora, Dept Matemat, P-7000 Evora, Portugal
[2] Univ Extremadura, Dept Matemat, E-06071 Badajoz, Spain
[3] Univ Granada, Dept Algebra, E-18071 Granada, Spain
关键词
Almost symmetric numerical semigroup; irreducible numerical semigroup; genus; Frobenius number; type;
D O I
10.1142/S0219498819502177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give two algorithmic procedures to compute the whole set of almost symmetric numerical semigroups with fixed Frobenius number and type, and the whole set of almost symmetric numerical semigroups with fixed Frobenius number. Our algorithms allow to compute the whole set of almost symmetric numerical semigroups with fixed Frobenius number with similar or even higher efficiency that the known ones. They have been implemented in the GAP [The GAP Group, GAP - Groups, Algorithms and Programming, Version 4.8.6; 2016, https://www.gap-system.org] package NumericalSgps [M. Delgado and P. A. Garcia-Sanchez and J. Morais, "numericalsgps": A GAP package on numerical semigroups, https://github.com/gap-packages/numericalsgps].
引用
收藏
页数:14
相关论文
共 15 条
[1]   One-dimensional almost Gorenstein rings [J].
Barucci, V ;
Froberg, R .
JOURNAL OF ALGEBRA, 1997, 188 (02) :418-442
[2]   The tree of irreducible numerical semigroups with fixed Frobenius number [J].
Blanco, Victor ;
Carlos Rosales, Jose .
FORUM MATHEMATICUM, 2013, 25 (06) :1249-1261
[3]   Fibonacci-like behavior of the number of numerical semigroups of a given genus [J].
Bras-Amoros, Maria .
SEMIGROUP FORUM, 2008, 76 (02) :379-384
[4]   Numerical semigroups with a given set of pseudo-Frobenius numbers [J].
Delgado, M. ;
Garcia-Sanchez, P. A. ;
Robles-Perez, A. M. .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2016, 19 (01) :186-205
[5]  
Delgado M., "numericalsgps": a GAP package on numerical semigroups
[6]   ON NUMERICAL SEMIGROUPS [J].
FROBERG, R ;
GOTTLIEB, C ;
HAGGKVIST, R .
SEMIGROUP FORUM, 1987, 35 (01) :63-83
[7]   LENGTH CALCULATION AND CANONIC IDEALS IN UNIDIMENSIONAL RINGS [J].
JAGER, J .
ARCHIV DER MATHEMATIK, 1977, 29 (05) :504-512
[8]   On the computation of the Apery set of numerical monoids and affine semigroups [J].
Marquez-Campos, Guadalupe ;
Ojeda, Ignacio ;
Tornero, Jose M. .
SEMIGROUP FORUM, 2015, 91 (01) :139-158
[9]   Symmetries on almost symmetric numerical semigroups [J].
Nari, Hirokatsu .
SEMIGROUP FORUM, 2013, 86 (01) :140-154
[10]   Simplicial complexes and minimal free resolution of monomial algebras [J].
Ojeda, Ignacio ;
Vigneron-Tenorio, A. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (06) :850-861