Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photoimmunotherapy

被引:163
作者
Fan, Zhijin [1 ]
Liu, Hongxing [2 ]
Xue, Yaohua [1 ]
Lin, Jingyan [3 ]
Fu, Yu [3 ]
Xia, Zhaohua [3 ]
Pan, Dongming [3 ]
Zhang, Jian [4 ]
Qiao, Kun [3 ]
Zhang, Zhenzhen [5 ]
Liao, Yuhui [1 ]
机构
[1] Southern Med Univ, Dermatol Hosp, Mol Diag & Treatment Ctr Infect Dis, Guangzhou 510091, Peoples R China
[2] Guangzhou Med Univ, Guangdong Key Lab Urol, Guangzhou Inst Urol, Dept Urol,Affiliated Hosp 1, Guangzhou 510230, Guangdong, Peoples R China
[3] Shenzhen Third Peoples Hosp, Dept Thorac Surg, Shenzhen 518110, Peoples R China
[4] Guangzhou Med Univ, Sch Basic Med Sci, Dept Biomed Engn, Guangzhou 511436, Peoples R China
[5] South China Normal Univ, Inst Brain Res & Rehabil, Guangzhou 510631, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Synergistic cancer photoimmunotherapy; Multimodal imaging; Metal-organic frameworks; CpG; Hot tumor; IMMUNE CHECKPOINT BLOCKADE; CANCER-IMMUNOTHERAPY; THERAPY; VIVO; NANODRUG; RELEASE; CELLS;
D O I
10.1016/j.bioactmat.2020.08.005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer.
引用
收藏
页码:312 / 325
页数:14
相关论文
共 63 条
[1]  
Ainsworth C, 2018, NATURE, V563, pS52, DOI 10.1038/d41586-018-07366-1
[2]   A framework for the development of effective anti-metastatic agents [J].
Anderson, Robin L. ;
Balasas, Theo ;
Callaghan, Juliana ;
Coombes, R. Charles ;
Evans, Jeff ;
Hall, Jacqueline A. ;
Kinrade, Sally ;
Jones, David ;
Jones, Paul S. ;
Jones, Rob ;
Marshall, John F. ;
Panico, Maria Beatrice ;
Shaw, Jacqui A. ;
Steeg, Patricia S. ;
Sullivan, Mark ;
Tong, Warwick ;
Westwell, Andrew D. ;
Ritchie, James W. A. ;
Berg, R. ;
Drysdale, M. ;
Eccles, S. ;
Elvin, P. ;
Harris, A. ;
Ireson, C. ;
Machesky, L. ;
McLeod, R. ;
Muschel, R. ;
Newell, H. ;
Pittman, M. ;
Roman, B. ;
Santos, C. ;
Sibson, N. ;
Smith, A. ;
Waddell, I .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (03) :185-204
[3]   High-throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) aminoterephthalate solvothermal system [J].
Bauer, Sebastian ;
Serre, Christian ;
Devic, Thomas ;
Horcajada, Patricia ;
Marrot, Jerome ;
Ferey, Gerard ;
Stock, Norbert .
INORGANIC CHEMISTRY, 2008, 47 (17) :7568-7576
[4]   Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade [J].
Benci, Joseph L. ;
Xu, Bihui ;
Qiu, Yu ;
Wu, Tony J. ;
Dada, Hannah ;
Twyman-Saint Victor, Christina ;
Cucolo, Lisa ;
Lee, David S. M. ;
Pauken, Kristen E. ;
Huang, Alexander C. ;
Gangadhar, Tara C. ;
Amaravadi, Ravi K. ;
Schuchter, Lynn M. ;
Feldman, Michael D. ;
Ishwaran, Hemant ;
Vonderheide, Robert H. ;
Maity, Amit ;
Wherry, E. John ;
Minn, Andy J. .
CELL, 2016, 167 (06) :1540-+
[5]  
Bender E, 2017, NATURE, V552, pS61
[6]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[7]   Targeting and Specific Activation of Antigen-Presenting Cells by Endogenous Antigen-Loaded Nanoparticles Elicits Tumor-Specific Immunity [J].
Chang, Hao-Cai ;
Zou, Zheng-Zhi ;
Wang, Qiu-Hong ;
Li, Jie ;
Jin, Huan ;
Yin, Qian-Xia ;
Xing, Da .
ADVANCED SCIENCE, 2020, 7 (01)
[8]   Hybrid Protein Nano-Reactors Enable Simultaneous Increments of Tumor Oxygenation and Iodine-131 Delivery for Enhanced Radionuclide Therapy [J].
Chen, Jiawen ;
Liang, Chao ;
Song, Xuejiao ;
Yi, Xuan ;
Yang, Kai ;
Feng, Liangzhu ;
Liu, Zhuang .
SMALL, 2019, 15 (46)
[9]   Tumor-Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel-Enhanced Immunotherapy with Polarization toward M1-Type Macrophages on Triple Negative Breast Cancers [J].
Chen, Lv ;
Zhou, Lulu ;
Wang, Chunhui ;
Han, Yi ;
Lu, Yonglin ;
Liu, Jie ;
Hu, Xiaochun ;
Yao, Tianming ;
Lin, Yun ;
Liang, Shujing ;
Shi, Shuo ;
Dong, Chunyan .
ADVANCED MATERIALS, 2019, 31 (52)
[10]   Ultrathin Tellurium Oxide/Ammonium Tungsten Bronze Nanoribbon for Multimodality Imaging and Second Near-Infrared Region Photothermal Therapy [J].
Cheng, Yaru ;
Yang, Fan ;
Xiang, Guolei ;
Zhang, Kai ;
Cao, Yu ;
Wang, Dongdong ;
Dong, Haifeng ;
Zhang, Xueji .
NANO LETTERS, 2019, 19 (02) :1179-1189