Physiological alterations due to field salinity stress in melon (Cucumis melo L.)

被引:38
|
作者
Akrami, Mahmoud [1 ]
Arzani, Ahmad [1 ]
机构
[1] Isfahan Univ Technol, Coll Agr, Dept Agron & Plant Breeding, Esfahan 8415683111, Iran
关键词
Cucumis melo L; Fruit yield; Lipid peroxidation; Osmolytes; Salt stress; SALT TOLERANCE; THELLUNGIELLA-HALOPHILA; LIPID-PEROXIDATION; OXIDATIVE STRESS; WHEAT GENOTYPES; FRUIT-QUALITY; GAS-EXCHANGE; YIELD; GROWTH; WATER;
D O I
10.1007/s11738-018-2657-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
This study was aimed to assess physiological responses of melon (Cucumis melo L.) cultivars to salinity stress under field conditions. Seventeen melon cultivars including 16 widely distributed native and one exotic ('Galia') were subjected to 2-year (2014-2015) field salinity stress. Leaf relative water content (RWC), membrane stability index (MSI), pigments [chlorophyll a, b, total chlorophyll (TChl), carotenoid (Car) and their ratios], malondialdehyde (MDA), H2O2 content, proline content (Pro), total soluble sugar content (TSC), salinity tolerance and susceptibility indices as well as yield were evaluated. The results of combined analysis of variance showed significant genotypic variation for all the traits and significant effect of salinity stress on all the traits with the exception of Chla/Chlb and TChl/Car ratios. Overall, field salinity stress caused an increase in leaf MDA, H2O2, Chla, Chlb, TChl, Car, Pro and TSC and caused a reduction in leaf MSI and RWC as well as yield. The results of correlation coefficients showed that accumulation of osmolytes (proline and TSC) led to an increase in RWC and a decrease in MDA contents. In addition, the results of multiple regression analysis showed that leaf MDA, TSC, MSI and Chla contents were the most important predictors of yield justifying 72% total variation of yield under saline conditions. These results may highlight a dynamic interplay among biomarkers for lipid peroxidation (MDA), sugar osmolytes (TSC) and photosynthetic pigment (Chla) to maintain cell viability and cell wall integrity under salinity stress conditions in melon.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Physiological alterations due to field salinity stress in melon (Cucumis melo L.)
    Mahmoud Akrami
    Ahmad Arzani
    Acta Physiologiae Plantarum, 2018, 40
  • [2] Physiological Aspects of Melon (Cucumis melo L.) as a Function of Salinity
    Fernando Henrique Alves da Silva
    Patrícia Lígia Dantas de Morais
    Nildo da Silva Dias
    Glauber Henrique de Sousa Nunes
    Marciana Bizerra de Morais
    Marlenildo Ferreira Melo
    Maria Tereza de Albuquerque Nascimento
    Journal of Plant Growth Regulation, 2021, 40 : 1298 - 1314
  • [3] Comparative Adaptation Responses of Melon (Cucumis melo L.) Genotypes to Salinity Stress
    Erdinc, C.
    Inal, B.
    Erez, E.
    Ekincialp, A.
    Sensoy, S.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2021, 23 (02): : 403 - 418
  • [4] Inheritance of fruit yield and quality in melon (Cucumis melo L.) grown under field salinity stress
    Mahmoud Akrami
    Ahmad Arzani
    Scientific Reports, 9
  • [5] Inheritance of fruit yield and quality in melon (Cucumis melo L.) grown under field salinity stress
    Akrami, Mahmoud
    Arzani, Ahmad
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [6] Physiological potential evaluation in melon seeds (Cucumis melo L.)
    Torres, SB
    Marcos, J
    SEED SCIENCE AND TECHNOLOGY, 2005, 33 (02) : 341 - 350
  • [7] The genome of melon (Cucumis melo L.)
    Garcia-Mas, Jordi
    Benjak, Andrej
    Sanseverino, Walter
    Bourgeois, Michael
    Mir, Gisela
    Gonzalez, Victor M.
    Henaff, Elizabeth
    Camara, Francisco
    Cozzuto, Luca
    Lowy, Ernesto
    Alioto, Tyler
    Capella-Gutierrez, Salvador
    Blanca, Jose
    Canizares, Joaquin
    Ziarsolo, Pello
    Gonzalez-Ibeas, Daniel
    Rodriguez-Moreno, Luis
    Droege, Marcus
    Du, Lei
    Alvarez-Tejado, Miguel
    Lorente-Galdos, Belen
    Mele, Marta
    Yang, Luming
    Weng, Yiqun
    Navarro, Arcadi
    Marques-Bonet, Tomas
    Aranda, Miguel A.
    Nuez, Fernando
    Pico, Belen
    Gabaldon, Toni
    Roma, Guglielmo
    Guigo, Roderic
    Casacuberta, Josep M.
    Arus, Pere
    Puigdomenech, Pere
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (29) : 11872 - 11877
  • [8] Exploring Heterosis in Melon (Cucumis melo L.)
    Napolitano, Marco
    Terzaroli, Niccolo
    Kashyap, Subash
    Russi, Luigi
    Jones-Evans, Elen
    Albertini, Emidio
    PLANTS-BASEL, 2020, 9 (02):
  • [9] Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: Prospects for selection of salt tolerant landraces
    Sarabi, Behrooz
    Bolandnazar, Sahebali
    Ghaderi, Nasser
    Ghashghaie, Jaleh
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2017, 119 : 294 - 311
  • [10] Field management of yellow melon (Cucumis melo L.) with silicon sources
    Porcino, Mirelly Miguel
    Oliveira, Valdeir de Souza
    da Silva, Edcarlos Camilo
    Nunes, Maria Silvana
    Tico, Barbara Moura
    de Holanda, Guilherme Chaves
    de Souza, Mileny dos Santos
    do Nascimento, Luciana Cordeiro
    ACTA SCIENTIARUM-AGRONOMY, 2024, 46