Monte Carlo Simulation of a Two-Factor Stochastic Volatility Model

被引:0
作者
Goncu, Ahmet [1 ]
机构
[1] Xian Jiaotong Liverpool Univ, Dept Math Sci, Suzhou 215123, Peoples R China
来源
INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTIST, IMECS 2012, VOL II | 2012年
关键词
Two-factor stochastic volatility model; Monte Carlo simulation; Randomized Quasi-Monte carlo; Scrambled Faure sequence; VARIANCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Empirical phenomenon in financial markets such as volatility smiles and term structure of implied volatilities made stochastic volatility models more attractive. In this paper we consider a multi factor stochastic volatility model with two mean reverting factors and the analytical approximation formula given by Fouque et al. [5] for a vanilla European call. Using the European call option pricng problem as our test problem we compared crude MC estimator with the randomized quasi-Monte Carlo method. Our findings show that using the randomized low discrepancy sequences such as Faure sequence, one can reduce the variance of the estimator and achieve faster convergence compared to crude Monte Carlo simulation.
引用
收藏
页码:1495 / 1500
页数:6
相关论文
共 19 条
[1]  
Caflisch R. E., 1997, The Journal of Computational Finance, V1, P27
[2]  
Christoffersen P.F., 2009, The Shape and Term Structure of the Index Option Smirk
[3]  
Fouque J. P., 2002, QUANTITATIVE FINANCE, V2, P2430
[4]  
Fouque J. P., 2004, SIAM J MULTISCALE MO, V2, P2242
[5]  
Fouque J. P., 2004, QUANTITATIVE FINANCE, V4
[6]  
Fouque J.-P., 2000, Derivatives in Financial Markets with Stochastic Volatility
[7]  
Fouque Jean-Pierre., 2003, J COMPUT FINANC, V6, P1
[8]   Singular perturbations in option pricing [J].
Fouque, JP ;
Papanicolaou, G ;
Sircar, R ;
Solna, K .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (05) :1648-1665
[9]  
GLASSERMAN P., 2004, Monte Carlo Methods in Financial Engineering
[10]  
Goncu A., 2009, THESIS