Semidefinite programming converse bounds for classical communication over quantum channels

被引:0
作者
Wang, Xin [1 ]
Xie, Wei [1 ]
Duan, Runyao [1 ,2 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat, Sydney, NSW 2007, Australia
[2] Chinese Acad Sci, UTS AMSS Joint Res Lab Quantum Computat & Quantum, Acad Math & Syst Sci, Beijing 100190, Peoples R China
来源
2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2017年
基金
澳大利亚研究理事会;
关键词
CAPACITY; INFORMATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the classical communication over quantum channels when assisted by no-signalling (NS) and PPT-preserving (PPT) codes. We first show that both the optimal success probability of a given transmission rate and one-shot c-error capacity can be formalized as semidefinite programs (SDPs) when assisted by NS or NSnPPT codes. Based on this, we derive SDP finite blocklength converse bounds for general quantum channels, which also reduce to the converse bound of Polyanskiy, Poor, and Verdu for classical channels. Furthermore, we derive an SDP strong converse bound for the classical capacity of a general quantum channel: for any code with a rate exceeding this bound, the optimal success probability vanishes exponentially fast as the number of channel uses increases. In particular, applying our efficiently computable bound, we derive improved upper bounds to the classical capacity of the amplitude damping channels and also establish the strong converse property for a new class of quantum channels.
引用
收藏
页码:1728 / 1732
页数:5
相关论文
共 47 条
  • [1] [Anonymous], 2007, ARXIV07092090
  • [2] Barman S, 2016, IEEE INT SYMP INFO, P905, DOI 10.1109/ISIT.2016.7541430
  • [3] Causal and localizable quantum operations
    Beckman, D
    Gottesman, D
    Nielsen, MA
    Preskill, J
    [J]. PHYSICAL REVIEW A, 2001, 64 (05): : 21 - 523092
  • [4] Entanglement-assisted classical capacity of noisy quantum channels
    Bennett, CH
    Shor, PW
    Smolin, JA
    Thapliyal, AV
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (15) : 3081 - 3084
  • [5] The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory
    Berta, Mario
    Christandl, Matthias
    Renner, Renato
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (03) : 579 - 615
  • [6] Entangled Inputs Cannot Make Imperfect Quantum Channels Perfect
    Brandao, F. G. S. L.
    Eisert, J.
    Horodecki, M.
    Yang, D.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (23)
  • [7] Transforming quantum operations: Quantum supermaps
    Chiribella, G.
    D'Ariano, G. M.
    Perinotti, P.
    [J]. EPL, 2008, 83 (03)
  • [8] Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations
    Cubitt, Toby S.
    Leung, Debbie
    Matthews, William
    Winter, Andreas
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 5509 - 5523
  • [9] A Smooth Entropy Approach to Quantum Hypothesis Testing and the Classical Capacity of Quantum Channels
    Datta, Nilanjana
    Mosonyi, Milan
    Hsieh, Min-Hsiu
    Brandao, Fernando G. S. L.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (12) : 8014 - 8026
  • [10] The apex of the family tree of protocols: optimal rates and resource inequalities
    Datta, Nilanjana
    Hsieh, Min-Hsiu
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13