State-of-charge estimation of lithium-ion batteries using composite multi-dimensional features and a neural network

被引:21
|
作者
Li, Jianhua [1 ,2 ,3 ]
Liu, Mingsheng [1 ,2 ,4 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin, Peoples R China
[2] Hebei Univ Technol, Key Lab Electromagnet Field & Elect Apparat Relia, Tianjin, Peoples R China
[3] Shijiazhuang TieDao Univ, Sch Informat Sci & Technol, Shijiazhuang, Hebei, Peoples R China
[4] Shijiazhuang Inst Railway Technol, Shijiazhuang, Hebei, Peoples R China
关键词
time series; secondary cells; neural nets; battery powered vehicles; least squares approximations; dynamometers; battery management systems; feed-forward neural network; time-series neural network; single-dimensional feature data; time series neural network; traditional estimation methods; state-of-charge estimation; lithium-ion batteries; multidimensional features data; battery; terminal voltage; low-dimensional feature data; open-circuit voltage; high-dimensional feature data; OCV-SOC method; OPEN-CIRCUIT VOLTAGE; HEALTH ESTIMATION; MODEL;
D O I
10.1049/iet-pel.2018.6144
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method that uses composite multi-dimensional features data to estimate the state of charge (SOC) of a battery is presented to address the shortcomings of using single-dimensional feature data. Two types of data, the terminal voltage and the terminal current, which can be obtained directly by measuring, are selected as low-dimensional feature data. The open-circuit voltage (OCV), as high-dimensional feature data, cannot be directly measured, and can be used to estimate the SOC by the OCV-SOC method. Thus, in this study, the second-order RC equivalent model of a battery is used and the OCV is identified online by the forgetting factor recursive least-squares algorithm. The proposed method is implemented by first using a feed-forward neural network, followed by a time-series neural network. The dynamic stress test and urban dynamometer driving schedule discharging profiles are applied to train and test the two neural networks. The experimental results show that the proposed method can estimate the SOC more accurately than neural networks using only single-dimensional feature data. Moreover, the time series neural network can overcome the shortcomings of traditional estimation methods.
引用
收藏
页码:1470 / 1478
页数:9
相关论文
共 50 条
  • [21] Comparison of State-of-Charge Estimation Methods for Stationary Lithium-Ion Batteries
    Berrueta, A.
    San Martin, I.
    Sanchis, P.
    Ursua, A.
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 2010 - 2015
  • [22] State-of-charge estimation of lithium-ion batteries based on ultrasonic detection
    Cai, Zhiduan
    Pan, Tianle
    Jiang, Haoye
    Li, Zuxin
    Wang, Yulong
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [23] eXogenous Kalman Filter for State-of-Charge Estimation in Lithium-Ion Batteries
    Hasan, Agus
    Skriver, Martin
    Johansen, Tor Arne
    2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2018, : 1403 - 1408
  • [24] Implementation of State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries
    Lin, Chang-Hua
    Wang, Chien-Ming
    Ho, Chien-Yeh
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 4790 - 4795
  • [25] State-of-Charge Estimation with State-of-Health Calibration for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Moo, Chin-Sien
    ENERGIES, 2017, 10 (07):
  • [26] State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network
    Feng, Xiong
    Chen, Junxiong
    Zhang, Zhongwei
    Miao, Shuwen
    Zhu, Qiao
    Energy, 2021, 236
  • [27] State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network
    Feng, Xiong
    Chen, Junxiong
    Zhang, Zhongwei
    Miao, Shuwen
    Zhu, Qiao
    ENERGY, 2021, 236
  • [28] Antidisturbance State-of-Charge Estimation for Lithium-Ion Batteries Using Nonlinear Extended State Observers
    Zhang, Shuo
    Wang, Xinghao
    Chen, Zifeng
    Xiao, Dianxun
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 2918 - 2928
  • [29] State of Charge Estimation in Lithium-Ion Batteries: A Neural Network Optimization Approach
    Lipu, M. S. Hossain
    Hannan, M. A.
    Hussain, Aini
    Ayob, Afida
    Saad, Mohamad H. M.
    Muttaqi, Kashem M.
    ELECTRONICS, 2020, 9 (09) : 1 - 24
  • [30] State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
    Chung, Dae-Won
    Ko, Jae-Ha
    Yoon, Keun-Young
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (03) : 1931 - 1945