Cyclic stress-strain behavior and thermomechanical effect in metal matrix composites

被引:0
作者
Kim, H. G. [1 ]
机构
[1] Jeonju Univ, Dept Mech Engn, Jeonju 560759, South Korea
来源
Macro-, Meso-, Micro- and Nano-Mechancis of Materials | 2005年 / 9卷
关键词
short fiber composite; cyclic stress; metal matrix composite; thermo-elasto-plastic finite element analysis (FEA); residual stress; fiber volume fraction;
D O I
10.4028/www.scientific.net/AMR.9.41
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A micromechanical model based on continuum analysis has been investigated by using finite element analysis (FEA) in discontinuous metal matrix composites (DMMC). To assess the tensile and compressive constitutive responses, a cyclic stress-strain behavior has been performed. For analysis procedure, the elastoplastic FEA and the regularly aligned axisymmetric single fiber model have been implemented to evaluate the internal field quantities. Accordingly, the fiber and matrix internal stresses were investigated for the constrained representative volume element (RVE). Further, the local plasticity in the matrix were described during loading and unloading precesses, which can predict the damage mechanisms as well as strengthening mechanisms. On the other hand, a thermo-elasto-plastic analysis has been performed using FEA for the application to the continuum behavior in a discontinuous metal matrix composite. The internal field quantities of composite as well as overall composite behavior and an experiment was demonstrated to compare with the numerical simulation. As the procedure, the reasonably optimized FE mesh generations, the appropriate imposition of boundary conditions, and the relevant postprocessing such as elasto-plastic thermo-mechanical analysis were taken into account. For micromechanical model, the temperature dependent material properties and precipitation hardening effects have been employed to investigate field quantities. It was found that the residual stresses are induced substantially by the temperature drop during heat treatment and that the FEA results give a good agreement with experimental data.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 10 条
[1]   MICROSTRUCTURE OF FIBER AND PARTICULATE SIC IN 6061-AL COMPOSITES [J].
ARSENAULT, RJ ;
FISHER, RM .
SCRIPTA METALLURGICA, 1983, 17 (01) :67-71
[2]   DISLOCATION GENERATION DUE TO DIFFERENCES BETWEEN THE COEFFICIENTS OF THERMAL-EXPANSION [J].
ARSENAULT, RJ ;
SHI, N .
MATERIALS SCIENCE AND ENGINEERING, 1986, 81 (1-2) :175-187
[3]  
ARSENAULT RJ, 1987, ACTA METALL, V35, P650
[4]  
COOK RD, 1989, CONCEPTS APPL FINITE, P163
[5]   Constitutive behaviors of discontinous reinforced composites [J].
Ji, BH ;
Wang, TC .
ADVANCES IN ENGINEERING PLASTICITY, PTS 1-2, 2000, 177-1 :297-302
[6]  
KIM HG, 2001, INT J KSME, V25, P2
[7]   A computational investigation on metal/ceramic joints under thermal cyclic loadings [J].
Park, MK ;
Bahk, S .
FRACTURE AND STRENGTH OF SOLIDS, PTS 1 AND 2, 2000, 183-1 :529-534
[8]   AN ANALYSIS OF THE EFFECT OF RESIDUAL-STRESSES ON DEFORMATION AND DAMAGE MECHANISMS IN AL-SIC COMPOSITES [J].
POVIRK, GL ;
NEEDLEMAN, A ;
NUTT, SR .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1991, 132 :31-38
[9]  
TAYA M, 1989, METAL MATRIX COMPOSI, P1
[10]   AN INSITU HVEM STUDY OF DISLOCATION GENERATION AT AL/SIC INTERFACES IN METAL MATRIX COMPOSITES [J].
VOGELSANG, M ;
ARSENAULT, RJ ;
FISHER, RM .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1986, 17 (03) :379-389