Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin

被引:188
作者
Zhou, Zixuan [1 ]
Qian, Chunhua [2 ]
Yuan, Weizhong [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Key Lab Adv Civil Mat, Minist Educ, Shanghai 201804, Peoples R China
[2] Tongji Univ, Shanghai Peoples Hosp 10, Sch Med, Dept Endocrinol & Metab, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-healing; Multifunctional composites; Multifunctional properties; Smart materials; Polymers; GRAPHENE OXIDE; GELS; CELLULOSE; FILM;
D O I
10.1016/j.compscitech.2020.108608
中图分类号
TB33 [复合材料];
学科分类号
摘要
Flexible wearable sensors assembled from conductive hydrogels have received great attention due to their wide application in human-machine interfaces, medical and healthcare detection. However, the traditional conductive gel needs to be attached to the application surface with external force, and only respond to the single strain stimulus. Moreover, due to the existence of water, ordinary hydrogels cannot work at below zero temperatures, which severely limits the application of hydrogel-based flexible electronic devices. The flexible wearable epidermal sensors assembled by ultra-sensitive polyvinyl alcohol-tannic acid-eutectic gallium-indium (PVA-TA-EGaIn) hydrogels with adhesiveness, rapid self-healing, high electrical conductivity and mechanical properties, and temperature sensitivity. The rigid conductive hydrogel prepared by freeze-thaw cycles shows outstanding tensile/compressive strength (1.13 MPa/4.59 MPa) and toughness (1.9 MJ/m(3)), and reveals excellent fatigue resistance. It also exhibited high conductivity (3.63 S m(-1)) and strain sensitivity (gauge factor = 2.59). In addition, the hydrogels maintained good flexibility and conductivity at 10 degrees C. Besides, the PVA-TA-EGaIn hydrogels shows remoldability, which greatly prolongs the service life of the gel. The composite hydrogels show the potential of building the next generation of multifunctional hydrogel-based flexible wearable sensors in human motion monitoring, voice recognition and medical diagnosis.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Electronic Muscles and Skins: A Review of Soft Sensors and Actuators [J].
Chen, Dustin ;
Pei, Qibing .
CHEMICAL REVIEWS, 2017, 117 (17) :11239-11268
[2]   Rational Fabrication of Anti-Freezing, Non-Drying Tough Organohydrogels by One-Pot Solvent Displacement [J].
Chen, Fan ;
Zhou, Dan ;
Wang, Jiahui ;
Li, Tianzhen ;
Zhou, Xiaohu ;
Gan, Tiansheng ;
Handschuh-Wang, Stephan ;
Zhou, Xuechang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (22) :6568-6571
[3]   Skin-Inspired Gels with Toughness, Antifreezing, Conductivity, and Remoldability [J].
Chen, Hao ;
Ren, Xiuyan ;
Gao, Guanghui .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (31) :28336-28344
[4]   Poly(vinyl alcohol)-Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors [J].
Chen, Ya-Nan ;
Peng, Lufang ;
Liu, Tianqi ;
Wang, Yaxin ;
Shi, Shengjie ;
Wang, Huiliang .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (40) :27199-27206
[5]   Twistable and Stretchable Sandwich Structured Fiber for Wearable Sensors and Supercapacitors [J].
Choi, Changsoon ;
Lee, Jae Myeong ;
Kim, Shi Hyeong ;
Kim, Seon Jeong ;
Di, Jiangtao ;
Baughman, Ray H. .
NANO LETTERS, 2016, 16 (12) :7677-7684
[6]   One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering [J].
Ejima, Hirotaka ;
Richardson, Joseph J. ;
Liang, Kang ;
Best, James P. ;
van Koeverden, Martin P. ;
Such, Georgina K. ;
Cui, Jiwei ;
Caruso, Frank .
SCIENCE, 2013, 341 (6142) :154-157
[7]   Supramolecular Hydrogel Formation Based on Tannic Acid [J].
Fan, Hailong ;
Wang, Le ;
Feng, Xunda ;
Bu, Yazhong ;
Wu, Decheng ;
Jin, Zhaoxia .
MACROMOLECULES, 2017, 50 (02) :666-676
[8]   Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing [J].
Fan, Ling ;
Xie, Liang ;
Zheng, Yaping ;
Wei, Daixu ;
Yao, Dongdong ;
Zhang, Jing ;
Zhang, Tuodi .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (19) :22225-22236
[9]   Highly Robust, Transparent, and Breathable Epidermal Electrode [J].
Fan, You Jun ;
Li, Xin ;
Kuang, Shuang Yang ;
Kuang, Yang ;
Zhang, Lei ;
Chen, Yang Hui ;
Liu, Lu ;
Zhang, Ke ;
Ma, Si Wei ;
Liang, Fei ;
Wu, Tao ;
Wang, Zhong Lin ;
Zhu, Guang .
ACS NANO, 2018, 12 (09) :9326-9332
[10]   A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches [J].
Gong, Shu ;
Wang, Yan ;
Yap, Lim Wei ;
Ling, Yunzhi ;
Zhao, Yunmeng ;
Dong, Dashen ;
Shi, Qianqian ;
Liu, Yiyi ;
Uddin, Hemayet ;
Cheng, Wenlong .
NANOSCALE HORIZONS, 2018, 3 (06) :640-647