Proper conditional analysis in the presence of missing data: Application to large scale meta-analysis of tobacco use phenotypes

被引:29
作者
Jiang, Yu [1 ]
Chen, Sai [2 ]
McGuire, Daniel [1 ]
Chen, Fang [1 ]
Liu, Mengzhen [3 ]
Iacono, William G. [3 ]
Hewitt, John K. [4 ]
Hokanson, John E. [5 ]
Krauter, Kenneth [4 ]
Laakso, Markku [6 ,7 ]
Li, Kevin W. [2 ]
Lutz, Sharon M. [8 ]
McGue, Matthew [3 ]
Pandit, Anita [2 ]
Zajac, Gregory J. M. [2 ]
Boehnke, Michael [2 ]
Abecasis, Goncalo R. [2 ]
Vrieze, Scott I. [3 ]
Zhan, Xiaowei [9 ]
Jiang, Bibo [1 ]
Liu, Dajiang J. [1 ]
机构
[1] Penn State Coll Med, Dept Publ Hlth Sci, Hershey, PA 17033 USA
[2] Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI 48109 USA
[3] Univ Minnesota, Dept Psychol, Minneapolis, MN USA
[4] Univ Colorado Boulder, Inst Behav Genet, Boulder, CO USA
[5] Univ Colorado, Dept Epidemiol, Colorado Sch Publ Hlth, Anschutz Med Campus, Aurora, CO USA
[6] Univ Eastern Finland, Inst Clin Med, Internal Med, Kuopio, Finland
[7] Kuopio Univ Hosp, Kuopio, Finland
[8] Univ Colorado, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO USA
[9] Univ Texas Southwestern Med Ctr Dallas, Dept Clin Sci, Quantitat Biomed Res Ctr, Dallas, TX 75390 USA
来源
PLOS GENETICS | 2018年 / 14卷 / 07期
关键词
GENOTYPE IMPUTATION; RARE VARIANTS; GENOME; TRIGLYCERIDES; ASSOCIATIONS; STATISTICS; FRAMEWORK; EFFICIENT; RISK;
D O I
10.1371/journal.pgen.1007452
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Meta-analysis of genetic association studies increases sample size and the power for mapping complex traits. Existing methods are mostly developed for datasets without missing values, i.e. the summary association statistics are measured for all variants in contributing studies. In practice, genotype imputation is not always effective. This may be the case when targeted genotyping/sequencing assays are used or when the un-typed genetic variant is rare. Therefore, contributed summary statistics often contain missing values. Existing methods for imputing missing summary association statistics and using imputed values in metaanalysis, approximate conditional analysis, or simple strategies such as complete case analysis all have theoretical limitations. Applying these approaches can bias genetic effect estimates and lead to seriously inflated type-I or type-II errors in conditional analysis, which is a critical tool for identifying independently associated variants. To address this challenge and complement imputation methods, we developed a method to combine summary statistics across participating studies and consistently estimate joint effects, even when the contributed summary statistics contain large amounts of missing values. Based on this estimator, we proposed a score statistic called PCBS (partial correlation based score statistic) for conditional analysis of single-variant and gene-level associations. Through extensive analysis of simulated and real data, we showed that the new method produces well-calibrated type-I errors and is substantially more powerful than existing approaches. We applied the proposed approach to one of the largest meta-analyses to date for the cigarettes-per day phenotype. Using the new method, we identified multiple novel independently associated variants at known loci for tobacco use, which were otherwise missed by alternative methods. Together, the phenotypic variance explained by these variants was 1.1%, improving that of previously reported associations by 71%. These findings illustrate the extent of locus allelic heterogeneity and can help pinpoint causal variants.
引用
收藏
页数:19
相关论文
共 41 条
[11]   Common variants associated with plasma triglycerides and risk for coronary artery disease [J].
Do, Ron ;
Willer, Cristen J. ;
Schmidt, Ellen M. ;
Sengupta, Sebanti ;
Gao, Chi ;
Peloso, Gina M. ;
Gustafsson, Stefan ;
Kanoni, Stavroula ;
Ganna, Andrea ;
Chen, Jin ;
Buchkovich, Martin L. ;
Mora, Samia ;
Beckmann, Jacques S. ;
Bragg-Gresham, Jennifer L. ;
Chang, Hsing-Yi ;
Demirkan, Ayse ;
Den Hertog, Heleen M. ;
Donnelly, Louise A. ;
Ehret, Georg B. ;
Esko, Tonu ;
Feitosa, Mary F. ;
Ferreira, Teresa ;
Fischer, Krista ;
Fontanillas, Pierre ;
Fraser, Ross M. ;
Freitag, Daniel F. ;
Gurdasani, Deepti ;
Heikkila, Kauko ;
Hyppoenen, Elina ;
Isaacs, Aaron ;
Jackson, Anne U. ;
Johansson, Asa ;
Johnson, Toby ;
Kaakinen, Marika ;
Kettunen, Johannes ;
Kleber, Marcus E. ;
Li, Xiaohui ;
Luan, Jian'an ;
Lyytikainen, Leo-Pekka ;
Magnusson, Patrik K. E. ;
Mangino, Massimo ;
Mihailov, Evelin ;
Montasser, May E. ;
Mueller-Nurasyid, Martina ;
Nolte, Ilja M. ;
O'Connell, Jeffrey R. ;
Palmer, Cameron D. ;
Perola, Markus ;
Petersen, Ann-Kristin ;
Sanna, Serena .
NATURE GENETICS, 2013, 45 (11) :1345-+
[12]   RAREMETAL: fast and powerful meta-analysis for rare variants [J].
Feng, Shuang ;
Liu, Dajiang ;
Zhan, Xiaowei ;
Wing, Mary Kate ;
Abecasis, Goncalo R. .
BIOINFORMATICS, 2014, 30 (19) :2828-2829
[13]   Meta-analysis of Gene-Level Associations for Rare Variants Based on Single-Variant Statistics [J].
Hu, Yi-Juan ;
Berndt, Sonja I. ;
Gustafsson, Stefan ;
Ganna, Andrea ;
Hirschhorn, Joel ;
North, Kari E. ;
Ingelsson, Erik ;
Lin, Dan-Yu .
AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 93 (02) :236-248
[14]   General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies [J].
Lee, Seunggeun ;
Teslovich, Tanya M. ;
Boehnke, Michael ;
Lin, Xihong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 93 (01) :42-53
[15]   Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases [J].
Li, Yue ;
Kellis, Manolis .
NUCLEIC ACIDS RESEARCH, 2016, 44 (18)
[16]   Exome-wide association study of plasma lipids in >300,000 individuals [J].
Liu, Dajiang J. ;
Peloso, Gina M. ;
Yu, Haojie ;
Butterworth, Adam S. ;
Wang, Xiao ;
Mahajan, Anubha ;
Saleheen, Danish ;
Emdin, Connor ;
Alam, Dewan ;
Alves, Alexessander Couto ;
Amouyel, Philippe ;
Di Angelantonio, Emanuele ;
Arveiler, Dominique ;
Assimes, Themistocles L. ;
Auer, Paul L. ;
Baber, Usman ;
Ballantyne, Christie M. ;
Bang, Lia E. ;
Benn, Marianne ;
Bis, Joshua C. ;
Boehnke, Michael ;
Boerwinkle, Eric ;
Bork-Jensen, Jette ;
Bottinger, Erwin P. ;
Brandslund, Ivan ;
Brown, Morris ;
Busonero, Fabio ;
Caulfield, Mark J. ;
Chambers, John C. ;
Chasman, Daniel I. ;
Chen, Y. Eugene ;
Chen, Yii-Der Ida ;
Chowdhury, Rajiv ;
Christensen, Cramer ;
Chu, Audrey Y. ;
Connell, John M. ;
Cucca, Francesco ;
Cupples, L. Adrienne ;
Damrauer, Scott M. ;
Davies, Gail ;
Deary, Ian J. ;
Dedoussis, George ;
Denny, Joshua C. ;
Dominiczak, Anna ;
Dube, Marie-Pierre ;
Ebeling, Tapani ;
Eiriksdottir, Gudny ;
Esko, Tonu ;
Farmaki, Aliki-Eleni ;
Feitosa, Mary F. .
NATURE GENETICS, 2017, 49 (12) :1758-+
[17]   Meta-analysis of gene- level tests for rare variant association [J].
Liu, Dajiang J. ;
Peloso, Gina M. ;
Zhan, Xiaowei ;
Holmen, Oddgeir L. ;
Zawistowski, Matthew ;
Feng, Shuang ;
Nikpay, Majid ;
Auer, Paul L. ;
Goel, Anuj ;
Zhang, He ;
Peters, Ulrike ;
Farrall, Martin ;
Orho-Melander, Marju ;
Kooperberg, Charles ;
McPherson, Ruth ;
Watkins, Hugh ;
Willer, Cristen J. ;
Hveem, Kristian ;
Melander, Olle ;
Kathiresan, Sekar ;
Abecasis, Goncalo R. .
NATURE GENETICS, 2014, 46 (02) :200-+
[18]   Psychophysiological endophenotypes to characterize mechanisms of known schizophrenia genetic loci [J].
Liu, M. ;
Malone, S. M. ;
Vaidyanathan, U. ;
Keller, M. C. ;
Abecasis, G. ;
Mcgue, M. ;
Iacono, W. G. ;
Vrieze, S. I. .
PSYCHOLOGICAL MEDICINE, 2017, 47 (06) :1116-1125
[19]   Rare and low-frequency coding variants alter human adult height [J].
Marouli, Eirini ;
Graff, Mariaelisa ;
Medina-Gomez, Carolina ;
Lo, Ken Sin ;
Wood, Andrew R. ;
Kjaer, Troels R. ;
Fine, Rebecca S. ;
Lu, Yingchang ;
Schurmann, Claudia ;
Highland, Heather M. ;
Rueger, Sina ;
Thorleifsson, Gudmar ;
Justice, Anne E. ;
Lamparter, David ;
Stirrups, Kathleen E. ;
Turcot, Valerie ;
Young, Kristin L. ;
Winkler, Thomas W. ;
Esko, Tonu ;
Karaderi, Tugce ;
Locke, Adam E. ;
Masca, Nicholas G. D. ;
Ng, Maggie C. Y. ;
Mudgal, Poorva ;
Rivas, Manuel A. ;
Vedantam, Sailaja ;
Mahajan, Anubha ;
Guo, Xiuqing ;
Abecasis, Goncalo ;
Aben, Katja K. ;
Adair, Linda S. ;
Alam, Dewan S. ;
Albrecht, Eva ;
Allin, Kristine H. ;
Allison, Matthew ;
Amouyel, Philippe ;
Appel, Emil V. ;
Arveiler, Dominique ;
Asselbergs, Folkert W. ;
Auer, Paul L. ;
Balkau, Beverley ;
Banas, Bernhard ;
Bang, Lia E. ;
Benn, Marianne ;
Bergmann, Sven ;
Bielak, Lawrence F. ;
Blueher, Matthias ;
Boeing, Heiner ;
Boerwinkle, Eric ;
Boeger, Carsten A. .
NATURE, 2017, 542 (7640) :186-190
[20]   A reference panel of 64,976 haplotypes for genotype imputation [J].
McCarthy, Shane ;
Das, Sayantan ;
Kretzschmar, Warren ;
Delaneau, Olivier ;
Wood, Andrew R. ;
Teumer, Alexander ;
Kang, Hyun Min ;
Fuchsberger, Christian ;
Danecek, Petr ;
Sharp, Kevin ;
Luo, Yang ;
Sidorel, Carlo ;
Kwong, Alan ;
Timpson, Nicholas ;
Koskinen, Seppo ;
Vrieze, Scott ;
Scott, Laura J. ;
Zhang, He ;
Mahajan, Anubha ;
Veldink, Jan ;
Peters, Ulrike ;
Pato, Carlos ;
van Duijn, Cornelia M. ;
Gillies, Christopher E. ;
Gandin, Ilaria ;
Mezzavilla, Massimo ;
Gilly, Arthur ;
Cocca, Massimiliano ;
Traglia, Michela ;
Angius, Andrea ;
Barrett, Jeffrey C. ;
Boomsma, Dorrett ;
Branham, Kari ;
Breen, Gerome ;
Brummett, Chad M. ;
Busonero, Fabio ;
Campbell, Harry ;
Chan, Andrew ;
Che, Sai ;
Chew, Emily ;
Collins, Francis S. ;
Corbin, Laura J. ;
Smith, George Davey ;
Dedoussis, George ;
Dorr, Marcus ;
Farmaki, Aliki-Eleni ;
Ferrucci, Luigi ;
Forer, Lukas ;
Fraser, Ross M. ;
Gabriel, Stacey .
NATURE GENETICS, 2016, 48 (10) :1279-1283