A Deep Learning-Based Approach for the Detection of Early Signs of Gingivitis in Orthodontic Patients Using Faster Region-Based Convolutional Neural Networks

被引:36
|
作者
Alalharith, Dima M. [1 ]
Alharthi, Hajar M. [1 ]
Alghamdi, Wejdan M. [1 ]
Alsenbel, Yasmine M. [1 ]
Aslam, Nida [1 ]
Khan, Irfan Ullah [1 ]
Shahin, Suliman Y. [2 ]
Dianiskova, Simona [3 ]
Alhareky, Muhanad S. [4 ]
Barouch, Kasumi K. [5 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Dept Comp Sci, Coll Comp Sci & Informat Technol, Dammam 31441, Saudi Arabia
[2] Imam Abdulrahman Bin Faisal Univ, Div Orthodont, Dept Prevent Dent Sci, Coll Dent, Dammam 31441, Saudi Arabia
[3] Slovak Med Univ, Dept Orthodont, Bratislava 83303, Slovakia
[4] Imam Abdulrahman Bin Faisal Univ, Div Pediat Dent, Dept Prevent Dent Sci, Coll Dent, Dammam 31441, Saudi Arabia
[5] Imam Abdulrahman Bin Faisal Univ, Div Periodontol, Dept Prevent Dent Sci, Coll Dent, Dammam 31441, Saudi Arabia
关键词
gingivitis; periodontal disease; deep learning; convolutional neural networks; DIAGNOSIS;
D O I
10.3390/ijerph17228447
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Computer-based technologies play a central role in the dentistry field, as they present many methods for diagnosing and detecting various diseases, such as periodontitis. The current study aimed to develop and evaluate the state-of-the-art object detection and recognition techniques and deep learning algorithms for the automatic detection of periodontal disease in orthodontic patients using intraoral images. In this study, a total of 134 intraoral images were divided into a training dataset (n = 107 [80%]) and a test dataset (n = 27 [20%]). Two Faster Region-based Convolutional Neural Network (R-CNN) models using ResNet-50 Convolutional Neural Network (CNN) were developed. The first model detects the teeth to locate the region of interest (ROI), while the second model detects gingival inflammation. The detection accuracy, precision, recall, and mean average precision (mAP) were calculated to verify the significance of the proposed model. The teeth detection model achieved an accuracy, precision, recall, and mAP of 100 %, 100%, 51.85%, and 100%, respectively. The inflammation detection model achieved an accuracy, precision, recall, and mAP of 77.12%, 88.02%, 41.75%, and 68.19%, respectively. This study proved the viability of deep learning models for the detection and diagnosis of gingivitis in intraoral images. Hence, this highlights its potential usability in the field of dentistry and aiding in reducing the severity of periodontal disease globally through preemptive non-invasive diagnosis.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] Bucket Teeth Detection Based on Faster Region Convolutional Neural Network
    Ji, Shengfei
    Li, Wei
    Zhang, Bo
    Zhou, Lingwei
    Duan, Chenxi
    IEEE ACCESS, 2021, 9 : 17649 - 17661
  • [42] Automatic detection of early gastric cancer in endoscopy based on Mask region-based convolutional neural networks (Mask R-CNN)(with video)
    Jin, Jing
    Zhang, Qianqian
    Dong, Bill
    Ma, Tao
    Mei, Xuecan
    Wang, Xi
    Song, Shaofang
    Peng, Jie
    Wu, Aijiu
    Dong, Lanfang
    Kong, Derun
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [43] A Deep Learning Approach for Early Detection of Facial Palsy in Video Using Convolutional Neural Networks: A Computational Study
    Arora, Anuja
    Zaeem, Jasir Mohammad
    Garg, Vibhor
    Jayal, Ambikesh
    Akhtar, Zahid
    COMPUTERS, 2024, 13 (08)
  • [44] Detection of pneumonia using convolutional neural networks and deep learning
    Szepesi, Patrik
    Szilagyi, Laszlo
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) : 1012 - 1022
  • [45] Automated Identification of Wood Veneer Surface Defects Using Faster Region-Based Convolutional Neural Network with Data Augmentation and Transfer Learning
    Urbonas, Augustas
    Raudonis, Vidas
    Maskeliunas, Rytis
    Damasevicius, Robertas
    APPLIED SCIENCES-BASEL, 2019, 9 (22):
  • [46] Object Detection and Depth Estimation Approach Based on Deep Convolutional Neural Networks
    Wang, Huai-Mu
    Lin, Huei-Yung
    Chang, Chin-Chen
    SENSORS, 2021, 21 (14)
  • [47] Detection of forest fire using deep convolutional neural networks with transfer learning approach
    Reis, Hatice Catal
    Turk, Veysel
    APPLIED SOFT COMPUTING, 2023, 143
  • [48] A deep learning approach for brain tumour detection system using convolutional neural networks
    Kalaiselvi, T.
    Padmapriya, S. T.
    Sriramakrishnan, P.
    Somasundaram, K.
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2021, 11 (5-6) : 514 - 526
  • [49] Grading Diabetic Retinopathy Using Transfer Learning-Based Convolutional Neural Networks
    Escorcia-Gutierrez, Jose
    Cuello, Jose
    Gamarra, Margarita
    Romero-Aroca, Pere
    Caicedo, Eduardo
    Valls, Aida
    Puig, Domenec
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2023, 2023, 14164 : 240 - 252
  • [50] Region-based Convolutional Neural Networks for Object Detection in Very High Resolution Remote Sensing Images
    Cao, Yushe
    Niu, Xin
    Dou, Yong
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 548 - 554