Optical reflectance of solution processed quasi-superlattice ZnO and Al-doped ZnO (AZO) channel materials

被引:11
作者
Buckley, Darragh [1 ]
McCormack, Robert [1 ]
O'Dwyer, Colm [1 ,2 ]
机构
[1] Univ Coll Cork, Dept Chem, Cork T12 YN60, Ireland
[2] Tyndall Natl Inst, Micronano Syst Ctr, Cork T12 R5CP, Ireland
基金
爱尔兰科学基金会;
关键词
thin films; ZnO; AZO; reflectance; solution processed; TFT; THIN-FILM TRANSISTORS; ROOM-TEMPERATURE; OXIDE SEMICONDUCTORS; SOLAR-CELLS; ENERGY; LAYERS; GEL;
D O I
10.1088/1361-6463/aa6559
中图分类号
O59 [应用物理学];
学科分类号
摘要
The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60 degrees (similar to 10-12% reflection) for thickness ranging from similar to 40nm to 500nm. The reflectance of AZO single layer thin films is < 10% from 30 to 75 degrees at 514.5nm, and < 6% at 632.8nm from 30-60 degrees. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Optical constants of hydrogenated zinc oxide thin films [J].
Al-Kuhaili, M. F. ;
Alade, I. O. ;
Durrani, S. M. A. .
OPTICAL MATERIALS EXPRESS, 2014, 4 (11) :2323-2331
[2]  
Armelao L, 2001, THIN SOLID FILMS, V394, P90, DOI 10.1016/S0040-6090(01)01158-0
[3]  
Banger KK, 2011, NAT MATER, V10, P45, DOI [10.1038/nmat2914, 10.1038/NMAT2914]
[4]   Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency [J].
Chou, Tammy P. ;
Zhang, Qifeng ;
Fryxell, Glen E. ;
Cao, Guozhong .
ADVANCED MATERIALS, 2007, 19 (18) :2588-+
[5]   Recent advances in ZnO transparent thin film transistors [J].
Fortunato, E ;
Barquinha, P ;
Pimentel, A ;
Gonçalves, A ;
Marques, A ;
Pereira, L ;
Martins, R .
THIN SOLID FILMS, 2005, 487 (1-2) :205-211
[6]  
Fortunato E, 2009, APPL PHYS A-MATER, V96, P197, DOI [10.1007/s00339-009-50865, 10.1007/s00339-009-5086-5]
[7]   Fully transparent ZnO thin-film transistor produced at room temperature [J].
Fortunato, EMC ;
Barquinha, PMC ;
Pimentel, ACMBG ;
Gonçalves, AMF ;
Marques, AJS ;
Pereira, LMN ;
Martins, RFP .
ADVANCED MATERIALS, 2005, 17 (05) :590-+
[8]   Transparent conducting oxides [J].
Ginley, DS ;
Bright, C .
MRS BULLETIN, 2000, 25 (08) :15-18
[9]   Solution Processable Metal Oxide Thin Film Deposition and Material Growth for Electronic and Photonic Devices [J].
Glynn, Colm ;
O'Dwyer, Colm .
ADVANCED MATERIALS INTERFACES, 2017, 4 (02)
[10]   Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping [J].
Glynn, Colm ;
Aureau, Damien ;
Collins, Gillian ;
O'Hanlon, Sally ;
Etcheberry, Arnaud ;
O'Dwyer, Colm .
NANOSCALE, 2015, 7 (47) :20227-20237