Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters

被引:20
作者
Vuong, Van Quan [1 ]
Madridejos, Jenica Marie L. [2 ]
Aradi, Balint [3 ]
Sumpter, Bobby G. [4 ,5 ]
Metha, Gregory F. [2 ]
Irle, Stephan [1 ,5 ]
机构
[1] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA
[2] Univ Adelaide, Dept Chem, Adelaide, SA 5005, Australia
[3] Univ Bremen, Bremen Ctr Computat Mat Sci, Bremen, Germany
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[5] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37830 USA
关键词
TOTAL-ENERGY CALCULATIONS; LARGE MOLECULAR-SYSTEMS; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURE; LIGAND-BINDING; NORMAL-MODES; BASIS-SETS; SCC-DFTB; CHEMISTRY; AU-13;
D O I
10.1039/d0sc04514d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a parameterization of the second-order density-functional tight-binding (DFTB2) method for the quantum chemical simulation of phosphine-ligated nanoscale gold clusters, metalloids, and gold surfaces. Our parameterization extends the previously released DFTB2 "auorg" parameter set by connecting it to the electronic parameter of phosphorus in the "mio" parameter set. Although this connection could technically simply be accomplished by creating only the required additional Au-P repulsive potential, we found that the Au 6p and P 3d virtual atomic orbital energy levels exert a strong influence on the overall performance of the combined parameter set. Our optimized parameters are validated against density functional theory (DFT) geometries, ligand binding and cluster isomerization energies, ligand dissociation potential energy curves, and molecular orbital energies for relevant phosphine-ligated Au-n clusters (n = 2-70), as well as selected experimental X-ray structures from the Cambridge Structural Database. In addition, we validate DFTB simulated far-IR spectra for several phosphine- and thiolate-ligated gold clusters against experimental and DFT spectra. The transferability of the parameter set is evaluated using DFT and DFTB potential energy surfaces resulting from the chemisorption of a PH3 molecule on the gold (111) surface. To demonstrate the potential of the DFTB method for quantum chemical simulations of metalloid gold clusters that are challenging for traditional DFT calculations, we report the predicted molecular geometry, electronic structure, ligand binding energy, and IR spectrum of Au108S24(PPh3)(16).
引用
收藏
页码:13113 / 13128
页数:16
相关论文
共 98 条
[11]   Controlling Gold Nanoclusters by Diphospine Ligands [J].
Chen, Jing ;
Zhang, Qian-Fan ;
Bonaccorso, Timary A. ;
Williard, Paul G. ;
Wang, Lai-Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (01) :92-95
[12]   Automatized Parameterization of DFTB Using Particle Swarm Optimization [J].
Chou, Chien-Pin ;
Nishimura, Yoshifumi ;
Fan, Chin-Chai ;
Mazur, Grzegorz ;
Irle, Stephan ;
Witek, Henryk A. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (01) :53-64
[13]   Supported Nano-Gold Catalysts for Epoxidation of Styrene and Oxidation of Benzyl Alcohol to Benzaldehyde [J].
Choudhary, Vasant R. ;
Dumbre, Deepa K. .
TOPICS IN CATALYSIS, 2009, 52 (12) :1677-1687
[14]   Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications [J].
Christensen, Anders S. ;
Kubar, Tomas ;
Cui, Qiang ;
Elstner, Marcus .
CHEMICAL REVIEWS, 2016, 116 (09) :5301-5337
[15]   The ONIOM Method and Its Applications [J].
Chung, Lung Wa ;
Sameera, W. M. C. ;
Ramozzi, Romain ;
Page, Alister J. ;
Hatanaka, Miho ;
Petrova, Galina P. ;
Harris, Travis V. ;
Li, Xin ;
Ke, Zhuofeng ;
Liu, Fengyi ;
Li, Hai-Bei ;
Ding, Lina ;
Morokuma, Keiji .
CHEMICAL REVIEWS, 2015, 115 (12) :5678-5796
[16]   The novel structure of the [Au-11(PMePh(2))(10)](3+) cation: Crystal structures of [Au-11(PMePh2)(10)] [C2B9H12](3)center dot 4thf and [Au-11(PMePh(2))(10)] [C2B9H12](3) (thf=tetrahydrofuran) [J].
Copley, RCB ;
Mingos, MP .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1996, (04) :479-489
[17]   Density functional tight binding: values of semi-empirical methods in an ab initio era [J].
Cui, Qiang ;
Elstner, Marcus .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (28) :14368-14377
[18]   ELECTRONIC-STRUCTURE AND BONDING OF HG(CH3)2, HG(CN)2, HG(CH3)(CN), HG(CCCH3)2, AND AU(PME3)(CH3) [J].
DEKOCK, RL ;
BAERENDS, EJ ;
BOERRIGTER, PM ;
HENGELMOLEN, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1984, 106 (12) :3387-3396
[19]   Establishing a Au Nanoparticle Size Effect in the Oxidation of Cyclohexene Using Gradually Changing Au Catalysts [J].
Donoeva, Baira G. ;
Ovoshchnikov, Daniil S. ;
Golovko, Vladimir B. .
ACS CATALYSIS, 2013, 3 (12) :2986-2991
[20]   Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties [J].
Du, Yuanxin ;
Sheng, Hongting ;
Astruc, Didier ;
Zhu, Manzhou .
CHEMICAL REVIEWS, 2020, 120 (02) :526-622