Attractivity and global stability for linearizable difference equations

被引:21
作者
Janowski, E. J. [1 ]
Kulenovic, M. R. S. [1 ]
机构
[1] Univ Rhode Isl, Dept Math, Kingston, RI 02881 USA
关键词
Attractivity; Difference equations; Linearized; Non-autonomous; Stability;
D O I
10.1016/j.camwa.2008.10.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the difference equation x(n+1) = f(x(n), ..., x(n-k)), n = 0, 1, ... where k is an element of {0, 1, ...} and the initial conditions are real numbers. We use the linearization of this equation in the form x(n+l) = Sigma(k)(i=1-l)g(i)x(n-i), n = 0, 1, ... where l is an element of {1,2, ...} and the functions g(i) : Rk+l -> R to investigate the asymptotic behavior of the solutions of the considered equation. We illustrate our results with various examples. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1592 / 1607
页数:16
相关论文
共 12 条
[1]   On the boundedness character of rational equations, part 1 [J].
Camouzis, E. ;
Ladas, G. ;
Palladino, F. ;
Quinn, E. P. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (05) :503-523
[2]   The global attractivity of difference equations of nonincreasing nonlinearities with applications [J].
El-Morshedy, HA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (4-5) :749-758
[3]  
Feuer J., 1996, J DIFFER EQU APPL, V2, P167, DOI DOI 10.1080/10236199608808051
[4]  
GROVE EA, 1998, P 4 INT C DIFF EQ AP, P149
[5]  
Kalabusic S., 2004, Adv. Difference Equ, P121
[6]  
Kocic V.L., 1993, Global behavior of nonlinear difference equations of higher order with applications
[7]  
Kulenovic M.R.S., 2001, DYNAMICS 2 ORDER RAT
[8]  
Kulenovic M. R. S., 2002, DISCRETE DYNAMICAL S
[9]   Invariants and related Liapunov functions for difference equations [J].
Kulenovic, MRS .
APPLIED MATHEMATICS LETTERS, 2000, 13 (07) :1-8
[10]   Global stability, two conjectures and Maple [J].
Nussbaum, Roger D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (05) :1064-1090