Nonexponential fidelity decay in isolated interacting quantum systems

被引:45
作者
Torres-Herrera, E. J. [1 ]
Santos, Lea F. [1 ]
机构
[1] Yeshiva Univ, Dept Phys, New York, NY 10016 USA
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 03期
基金
美国国家科学基金会;
关键词
STRENGTH FUNCTIONS; CHARACTERISTIC VECTORS; BORDERED MATRICES; SHELL-MODEL; TIME; LEVEL; EVOLUTION; DYNAMICS; DECOHERENCE; CHAINS;
D O I
10.1103/PhysRevA.90.033623
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study isolated finite interacting quantum systems after an instantaneous perturbation and show three scenarios in which the probability for finding the initial state later in time (fidelity) decays nonexponentially, often all the way to saturation. The decays analyzed involve Gaussian, Bessel of the first kind, and cosine squared functions. The Gaussian behavior emerges in systems with two-body interactions in the limit of strong perturbation. The Bessel function, associated with the evolution under full random matrices, is obtained with surprisingly sparse random matrices. The cosine squared behavior, established by the energy-time uncertainty relation, is approached after a local perturbation in space.
引用
收藏
页数:9
相关论文
共 96 条
[1]   Dynamical quantum phase transitions and the Loschmidt echo: A transfer matrix approach [J].
Andraschko, F. ;
Sirker, J. .
PHYSICAL REVIEW B, 2014, 89 (12)
[2]  
Angom D, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016209
[3]  
[Anonymous], 1945, J. Phys. USSR, DOI DOI 10.1007/978-3-642-74626-0_8
[4]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[5]   Quantum-classical correspondence in perturbed chaotic systems [J].
Benenti, G ;
Casati, G .
PHYSICAL REVIEW E, 2002, 65 (06)
[6]   Fidelity decay in interacting two-level boson systems: Freezing and revivals [J].
Benet, Luis ;
Hernandez-Quiroz, Saul ;
Seligman, Thomas H. .
PHYSICAL REVIEW E, 2011, 83 (05)
[7]   EXCITATION OF MULTIPHONON GIANT-RESONANCE STATES IN RELATIVISTIC HEAVY-ION COLLISIONS [J].
BERTULANI, CA ;
ZELEVINSKY, V .
NUCLEAR PHYSICS A, 1994, 568 (04) :931-952
[8]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[9]   QUANTUM DECAY AND THE MANDELSTAM-TAMM TIME ENERGY INEQUALITY [J].
BHATTACHARYYA, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (13) :2993-2996
[10]   2-BODY RANDOM HAMILTONIAN AND LEVEL DENSITY [J].
BOHIGAS, O ;
FLORES, J .
PHYSICS LETTERS B, 1971, B 34 (04) :261-&