NON-UNIQUENESS RESULTS FOR THE ANISOTROPIC CALDERON PROBLEM WITH DATA MEASURED ON DISJOINT SETS

被引:12
作者
Daude, Thierry [1 ]
Kamran, Niky [2 ]
Nicoleau, Francois [3 ]
机构
[1] Univ Cergy Pontoise, Dept Math, UMR CNRS 8088, F-95302 Cergy Pontoise, France
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Francois NICOLEAU, Lab Math Jean Leray, UMR CNRS 6629, 2 Rue Houssiniere BP 92208, F-44322 Nantes 03, France
基金
加拿大自然科学与工程研究理事会;
关键词
Anisotropic Calderon problem; Helmholtz equation on a Riemannian manifold; Sturm-Liouville problems; Weyl-Titchmarsh functions; INVERSE PROBLEMS; FIXED-ENERGY; UNIQUENESS; CONDUCTIVITY; SCATTERING; MANIFOLDS; OPERATORS;
D O I
10.5802/aif.3240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that there is non-uniqueness in the Calderon problem on Riemannian manifolds when the Dirichlet and Neumann data are measured on disjoint sets of the boundary. We provide counterexamples in the case of two and three dimensional Riemannian manifolds with boundary having the topology of circular cylinders in dimension two and toric cylinders in dimension three. The construction could be easily extended to higher dimensional Riemannian manifolds.
引用
收藏
页码:119 / 170
页数:52
相关论文
共 46 条
  • [21] THE CALDERON PROBLEM WITH PARTIAL DATA IN TWO DIMENSIONS
    Imanuvilov, Oleg Yu.
    Uhlmann, Gunther
    Yamamoto, Masahiro
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (03) : 655 - 691
  • [22] On uniqueness in the inverse conductivity problem with local data
    Isakov, Victor
    [J]. INVERSE PROBLEMS AND IMAGING, 2007, 1 (01) : 95 - 105
  • [23] Kang H, 2003, SIAM J MATH ANAL, V34, P719
  • [24] Equivalence of time-domain inverse problems and boundary spectral problems
    Katchalov, A
    Kurylev, Y
    Lassas, M
    Mandache, N
    [J]. INVERSE PROBLEMS, 2004, 20 (02) : 419 - 436
  • [25] Katchalov A., 2001, INVERSE BOUNDARY SPE, V123
  • [26] Kenig C., 2014, Contemp. Math., V615, P193, DOI [10.1090/conm/615/12245, DOI 10.1090/CONM/615/12245]
  • [27] THE CALDERON PROBLEM WITH PARTIAL DATA ON MANIFOLDS AND APPLICATIONS
    Kenig, Carlos
    Salo, Mikko
    [J]. ANALYSIS & PDE, 2013, 6 (08): : 2003 - 2048
  • [28] The Calderon problem with partial data
    Kenig, Carlos E.
    Sjostrand, Johannes
    Uhlmann, Gunther
    [J]. ANNALS OF MATHEMATICS, 2007, 165 (02) : 567 - 591
  • [29] Weyl-Titchmarsh Theory for Schrodinger Operators with Strongly Singular Potentials
    Kostenko, Aleksey
    Sakhnovich, Alexander
    Teschl, Gerald
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (08) : 1699 - 1747
  • [30] Lassas M, 2003, COMMUN ANAL GEOM, V11, P207