Thermodynamic behavior of the generalized scalar Yukawa model in a magnetic background

被引:12
作者
Abreu, L. M. [1 ]
Malbouisson, A. P. C. [2 ]
Malbouisson, J. M. C. [1 ]
Nery, E. S. [1 ]
Rodrigues da Silva, R. [3 ]
机构
[1] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
[2] MCTI, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil
[3] Univ Fed Campina Grande, Unidade Acad Fis, Campina Grande, PB, Brazil
关键词
Finite-temperature field theory; Scalar Yukawa model; QUANTUM-FIELD THEORY; FINITE-TEMPERATURE;
D O I
10.1016/j.nuclphysb.2014.02.013
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the thermodynamic behavior of the generalized scalar Yukawa model, composed of a complex scalar field interacting with scalar and vector fields. Thermal effects are treated in the framework of generalized zeta-functions. For the case of vanishing effective chemical potential, we find a vanishing contribution from the vector field. We focus on the analysis of the phase structure of this model at effective chemical equilibrium, under change of values of the relevant parameters of the model, looking specially to the influence of the magnetic background on the phase structure. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
引用
收藏
页码:327 / 342
页数:16
相关论文
共 38 条
[1]   Effective squark/chargino/neutralino couplings: MadGraph implementation [J].
Abrahantes, Arian ;
Guasch, Jaume ;
Penaranda, Siannah ;
Sanchez-Florit, Raul .
EUROPEAN PHYSICAL JOURNAL C, 2013, 73 (04) :1-21
[2]   Nambu-Jona-Lasinio model in a magnetic background: Size-dependent effects [J].
Abreu, L. M. ;
Malbouisson, A. P. C. ;
Malbouisson, J. M. C. .
PHYSICAL REVIEW D, 2011, 84 (06)
[3]   Finite-size effects on the phase diagram of difermion condensates in two-dimensional four-fermion interaction models [J].
Abreu, L. M. ;
Malbouisson, A. P. C. ;
Malbouisson, J. M. C. .
PHYSICAL REVIEW D, 2011, 83 (02)
[4]   Finite-size effects on the chiral phase diagram of four-fermion models in four dimensions [J].
Abreu, L. M. ;
Malbouisson, A. P. C. ;
Malbouisson, J. M. C. ;
Santana, A. E. .
NUCLEAR PHYSICS B, 2009, 819 (1-2) :127-138
[5]  
Abreu L.M., 2012, ARXIV12115505
[6]   J/ψ and ηc in the deconfined plasma from lattice QCD -: art. no. 012001 [J].
Asakawa, M ;
Hatsuda, T .
PHYSICAL REVIEW LETTERS, 2004, 92 (01)
[7]   Variational worldline approximation for the relativistic two-body bound state in a scalar model [J].
Barro-Bergfloedt, K. ;
Rosenfelder, R. ;
Stingl, M. .
FEW-BODY SYSTEMS, 2006, 39 (3-4) :193-253
[8]  
Bellac M. L, 1996, Cambridge Monographs on mathematical physics
[9]   REVIEW OF PARTICLE PHYSICS Particle Data Group [J].
Beringer, J. ;
Arguin, J. -F. ;
Barnett, R. M. ;
Copic, K. ;
Dahl, O. ;
Groom, D. E. ;
Lin, C. -J. ;
Lys, J. ;
Murayama, H. ;
Wohl, C. G. ;
Yao, W. -M. ;
Zyla, P. A. ;
Amsler, C. ;
Antonelli, M. ;
Asner, D. M. ;
Baer, H. ;
Band, H. R. ;
Basaglia, T. ;
Bauer, C. W. ;
Beatty, J. J. ;
Belousov, V. I. ;
Bergren, E. ;
Bernardi, G. ;
Bertl, W. ;
Bethke, S. ;
Bichsel, H. ;
Biebel, O. ;
Blucher, E. ;
Blusk, S. ;
Brooijmans, G. ;
Buchmueller, O. ;
Cahn, R. N. ;
Carena, M. ;
Ceccucci, A. ;
Chakraborty, D. ;
Chen, M. -C. ;
Chivukula, R. S. ;
Cowan, G. ;
D'Ambrosio, G. ;
Damour, T. ;
de Florian, D. ;
de Gouvea, A. ;
DeGrand, T. ;
de Jong, P. ;
Dissertori, G. ;
Dobrescu, B. ;
Doser, M. ;
Drees, M. ;
Edwards, D. A. ;
Eidelman, S. .
PHYSICAL REVIEW D, 2012, 86 (01)
[10]  
Bornyakov V.G., 2011, ARXIV11024461