Symmetries and similarity reductions of Nonlinear diffusion equation

被引:0
作者
Li, HJ [1 ]
Ruan, HY [1 ]
机构
[1] Ningbo Univ, Dept Phys, Ningbo 315211, Peoples R China
关键词
inverse of recursion operator; diffusion equation; similarity reduction;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The inverse recursion operator, three new sets of symmetries, and infinite-dimensional Lie algebras for the nonlinear diffusion equation are given. Some nonlocal symmetries related to eigenvectors of the recursion operator 4) with the eigenvalue lambda(i) are also obtained with the help of the recursion operator Phi(i) = Phi - lambda(i). Using a part of these symmetries we get twelve types of nontrivial new similarity reduction.
引用
收藏
页码:201 / 205
页数:5
相关论文
共 50 条
[31]   PERIODIC SOLUTIONS OF A NON-DIVERGENT DIFFUSION EQUATION WITH NONLINEAR SOURCES [J].
Jin, Chunhua ;
Yin, Jingxue .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (01) :101-126
[32]   REDUCTIONS OF STATIONARY BOUNDARY LAYER EQUATION [J].
Aksenov, A. V. ;
Kozyrev, A. A. .
UFA MATHEMATICAL JOURNAL, 2012, 4 (04) :3-12
[33]   Similarity reductions of peakon equations: integrable cubic equations [J].
Barnes, L. E. ;
Hone, A. N. W. ;
Senthilvelan, M. ;
Stalin, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (42)
[34]   Local Well-posedness of Nonlinear Time-fractional Diffusion Equation [J].
Suechoei, Apassara ;
Ngiamsunthorn, Parinya Sa .
THAI JOURNAL OF MATHEMATICS, 2021, 19 (03) :865-884
[35]   Denoising of electrical derivative data of semiconductor lasers based on nonlinear diffusion equation [J].
Gao Fengli ;
Guo Shuxu ;
Lu Bibo ;
Cao Junsheng ;
Zhang Shuang ;
Wei Ke .
SIGNAL ANALYSIS, MEASUREMENT THEORY, PHOTO-ELECTRONIC TECHNOLOGY, AND ARTIFICIAL INTELLIGENCE, PTS 1 AND 2, 2006, 6357
[36]   Lie symmetries of Benjamin-Ono equation [J].
Zhao, Weidong ;
Munir, Mobeen ;
Murtaza, Ghulam ;
Athar, Muhammad .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) :9496-9510
[37]   Similarity reductions of the (2+1)-dimensional Burgers system [J].
Liu, DB ;
Chu, KQ .
CHINESE PHYSICS, 2001, 10 (08) :683-688
[39]   Abundant similarity reductions and dromion-like solutions to the generalized Kroteweg-de Vries equation in the (2+1)-dimensional space [J].
Yan, ZY .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 36 (05) :513-518
[40]   Similarity Reductions and Exact Solutions of a Coupled Korteweg de Vries System [J].
毛杰健 ;
杨建荣 .
CommunicationsinTheoreticalPhysics, 2010, 53 (04) :605-608