Bridging Finite Element and Machine Learning Modeling: Stress Prediction of Arterial Walls in Atherosclerosis

被引:61
作者
Madani, Ali [1 ,2 ]
Bakhaty, Ahmed [1 ,2 ,3 ]
Kim, Jiwon [1 ,2 ,4 ]
Mubarak, Yara [1 ,2 ,3 ]
Mofrad, Mohammad R. K. [1 ,2 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Bioengn, Mol Cell Biomech Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mech Engn, 208A Stanley Hall 1762, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Civil Engn, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2019年 / 141卷 / 08期
关键词
deep learning; finite element method; atherosclerosis; FRAMEWORK;
D O I
10.1115/1.4043290
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Finite element and machine learning modeling are two predictive paradigms that have rarely been bridged. In this study, we develop a parametric model to generate arterial geometries and accumulate a database of 12,172 2D finite element simulations modeling the hyperelastic behavior and resulting stress distribution. The arterial wall composition mimics vessels in atherosclerosis-a complex cardiovascular disease and one of the leading causes of death globally. We formulate the training data to predict the maximum von Mises stress, which could indicate risk of plaque rupture. Trained deep learning models are able to accurately predict the max von Mises stress within 9.86% error on a held-out test set. The deep neural networks outperform alternative prediction models and performance scales with amount of training data. Lastly, we examine the importance of contributing features on stress value and location prediction to gain intuitions on the underlying process. Moreover, deep neural networks can capture the functional mapping described by the finite element method, which has far-reaching implications for real-time and multiscale prediction tasks in biomechanics.
引用
收藏
页数:9
相关论文
共 38 条
[1]  
Abadi M., 2015, P 12 USENIX S OPERAT
[2]  
Asgari E., 2018, BIOINFORMATICS, V954, P1
[3]   MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples [J].
Asgari, Ehsaneddin ;
Garakani, Kiavash ;
McHardy, Alice C. ;
Mofrad, Mohammad R. K. .
BIOINFORMATICS, 2018, 34 (13) :32-42
[4]   Consistent trilayer biomechanical modeling of aortic valve leaflet tissue [J].
Bakhaty, Ahmed A. ;
Govindjee, Sanjay ;
Mofrad, Mohammad R. K. .
JOURNAL OF BIOMECHANICS, 2017, 61 :1-10
[5]   Adaptive machine learning framework to accelerate ab initio molecular dynamics [J].
Botu, Venkatesh ;
Ramprasad, Rampi .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1074-1083
[6]   Mechanical analysis of atherosclerotic plaques based on optical coherence tomography [J].
Chau, AH ;
Chan, RC ;
Shishkov, M ;
MacNeill, B ;
Iftimiia, N ;
Tearney, GJ ;
Kamm, RD ;
Bouma, BE ;
Kaazempur-Mofrad, MR .
ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (11) :1494-1503
[7]  
Chen X., 2016, BIOTECHNOLOGY BIOTEC, V30, P1
[8]  
Chollet F., 2015, Keras
[9]  
Fung Y.C., 1990, Biomechanics: Motion, Flow, Stress, and Growth, P499
[10]   Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests [J].
Gundiah, Namrata ;
Ratcliffe, Mark B. ;
Pruitt, Lisa A. .
JOURNAL OF BIOMECHANICS, 2007, 40 (03) :586-594