Perturbative Yang-Mills theory without Faddeev-Popov ghost fields

被引:1
|
作者
Huffel, Helmuth [1 ]
Markovic, Danijel [1 ]
机构
[1] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
关键词
TRANSVERSE ENERGY; GRIBOV COPIES; GAUGE-FIELDS; QUANTIZATION; RENORMALIZATION; SYMMETRIES; ELECTRONS; GEOMETRY; MODEL; MASS;
D O I
10.1016/j.physletb.2018.03.030
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A modified Faddeev-Popov path integral density for the quantization of Yang-Mills theory in the Feynman gauge is discussed, where contributions of the Faddeev-Popov ghost fields are replaced by multi-point gauge field interactions. An explicit calculation to O(g(2)) shows the equivalence of the usual Faddeev-Popov scheme and its modified version. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:418 / 421
页数:4
相关论文
共 50 条
  • [41] Non-trivial Backgrounds in (non-perturbative) Yang-Mills Theory by the Slavnov-Taylor Identity
    Quadri, A.
    7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [42] Infrared singularities in Landau gauge Yang-Mills theory
    Alkofer, Reinhard
    Huber, Markus Q.
    Schwenzer, Kai
    PHYSICAL REVIEW D, 2010, 81 (10)
  • [43] Asymptotic structure of higher dimensional Yang-Mills theory
    He, Temple
    Mitra, Prahar
    SCIPOST PHYSICS, 2024, 16 (05):
  • [44] Super Yang-Mills theory from nonlinear supersymmetry
    Shima, Kazunari
    Tsuda, Motomu
    PHYSICS LETTERS B, 2010, 687 (01) : 89 - 91
  • [45] Path integral regularization of pure Yang-Mills theory
    Jacquot, J. L.
    PHYSICAL REVIEW D, 2009, 80 (02):
  • [46] Universal invariant renormalization for the supersymmetric Yang-Mills theory
    Slavnov, AA
    Stepanyantzt, KV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 139 (02) : 599 - 608
  • [47] BRST renormalization of the first order Yang-Mills theory
    Frenkel, J.
    Taylor, John C.
    ANNALS OF PHYSICS, 2017, 387 : 1 - 13
  • [48] Null Hamiltonian Yang-Mills theory: Soft Symmetries and Memory as Superselection
    Riello, A.
    Schiavina, M.
    ANNALES HENRI POINCARE, 2025, 26 (02): : 389 - 477
  • [49] Dirichlet to Neumann operator for Abelian Yang-Mills gauge fields
    Diaz-Marin, Homero G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (11)
  • [50] Variational approach to Yang-Mills theory at finite temperatures
    Reinhardt, H.
    Campagnari, D. R.
    Szczepaniak, A. P.
    PHYSICAL REVIEW D, 2011, 84 (04):