Stability and Hopf bifurcation analysis of a new system

被引:15
作者
Huang, Kuifei [2 ]
Yang, Qigui [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] Guangxi Normal Univ, Sch Math Sci, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
LORENZ CANONICAL FORM; CHENS SYSTEM; CHAOTIC ATTRACTOR; DYNAMICAL-SYSTEMS; LU SYSTEM; SYNCHRONIZATION;
D O I
10.1016/j.chaos.2007.01.107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it new chaotic system is introduced. The system contains special cases as the modified Lorenz system and Conjugate Chen system. Some subtle characteristics of stability and Hopf bifurcation of the new chaotic system are thoroughly investigated by rigorous mathematical analysis and symbolic computations. Meanwhile, some numerical simulations for justifying the theoretical analysis are also presented. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:567 / 578
页数:12
相关论文
共 29 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[3]  
CELIKOVSKY S, 1994, KYBERNETIKA, V30, P403
[4]  
Celikovsky S., 2002, P 15 TRIENN WORLD C
[5]  
Chen G., 1998, CHAOS ORDER METHODOL
[6]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[7]  
Hassard BD, 1981, THEORY APPL HOPF BIF
[8]   A note on Hopf bifurcation in Chen's system [J].
Li, CP ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (06) :1609-1615
[9]   On stability and bifurcation of Chen's system [J].
Li, TC ;
Chen, GR ;
Tang, Y .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1269-1282
[10]  
Lian KY, 2000, IEEE T CIRCUITS-I, V47, P1418, DOI 10.1109/81.883341