The rapid H2 release from AlH3 dehydrogenation forming porous layer in AlH3/hydroxyl-terminated polybutadiene (HTPB) fuels during combustion

被引:63
作者
Chen, Suhang [1 ]
Tang, Yue [2 ]
Yu, Hongsheng [1 ]
Bao, Lirong [1 ]
Zhang, Wei [1 ]
DeLuca, Luigi T. [3 ]
Shen, Ruiqi [1 ]
Ye, Yinghua [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Jiangsu Police Inst, Dept Forens Sci & Technol, Nanjing 210031, Jiangsu, Peoples R China
[3] Politecn Milan, Space Prop Lab SPLab, Dept Aerosp Sci & Technol, I-20156 Milan, Italy
基金
中国国家自然科学基金;
关键词
AlH3; dehydrogenation; HTPB; Avrami-Erofeev mechanism; Porous layer; HYDROXYL-TERMINATED POLYBUTADIENE; THERMAL-DECOMPOSITION; ALUMINUM-HYDRIDE; HYDROGEN GENERATION; ROCKET PROPELLANTS; REGRESSION RATE; STORAGE; KINETICS; PERFORMANCE; BEHAVIOR;
D O I
10.1016/j.jhazmat.2019.02.045
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Although the motivation of AlH3 enhancing combustion were recognized in many research, the promotion mechanism have been rarely explored. Herein, a previously unreported porous layer mechanism when combustion were determined in HTPB/AlH3 fuels by SEM, thermo-analysis and a new simplified calculation method, owing to rapidly released gas phase H-2 from AlH3 dehydrogenation exposing in melting layer. 5/10% 40-80 mu m and 10% 80-200 mu m AlH3-HTPB formulas show the regression rate increase by, 25.7%, 29.0% and 43.0% at Gox = 350 kg/m(2).s, while by 57.2%, 42.0% and 44.2% enhancement at Gox = 150 kg/m(2).s. The low AlH3 content (<= 10%) promotes the regression rate obviously, while excess AlH3 content (>= 20%) promotes slightly as a result of comprehensive factors combined by energy release, a certain porous layer mechanism, aggregated Al2O3 attached on the burning surface and the blocking effect of the gaseous released H-2. A new model predicting the overlapping process of AlH3 dehydrogenation and Al oxidation in air atmosphere was developed by superimposing AlH3 dehydrogenation simulation and corresponding separated Al oxidation simulation. A 1.5th Avrami-Erofeev (A-E) simulation was proposed for Al passivation weight gain between 420 and 520 K with an activation energy of 124.92 kJ/mol and the pre-exponential of 10(boolean AND)12.35.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 38 条
  • [1] Combustion characteristics of aluminum hydride at elevated pressure and temperature
    Bazyn, T
    Eyer, R
    Krier, H
    Glumac, N
    [J]. JOURNAL OF PROPULSION AND POWER, 2004, 20 (03) : 427 - 431
  • [2] Calabro M., 2004, 40 AIAA ASME SAE ASE, DOI [10.2514/6.2004-3823, DOI 10.2514/6.2004-3823]
  • [3] Combustion enhancement of hydroxyl-terminated polybutadiene by doping multiwall carbon nanotubes
    Chen, Suhang
    Tang, Yue
    Yu, Hongsheng
    Guan, Xinyan
    DeLuca, Luigi T.
    Zhang, Wei
    Shen, Ruiqi
    Ye, Yinghua
    [J]. CARBON, 2019, 144 : 472 - 480
  • [4] Chen SH, 2017, INT J ENERG MATER CH, V16, P103, DOI 10.1615/IntJEnergeticMaterialsChemProp.2018022374
  • [5] Regression rate behavior of hybrid rocket solid fuels
    Chiaverini, MJ
    Serin, N
    Johnson, DK
    Lu, YC
    Kuo, KK
    Risha, GA
    [J]. JOURNAL OF PROPULSION AND POWER, 2000, 16 (01) : 125 - 132
  • [6] Combustion of alane and aluminum with water for hydrogen and thermal energy generation
    Connell, Terrence L., Jr.
    Risha, Grant A.
    Yetter, Richard A.
    Young, Gregory
    Sundaram, Dilip S.
    Yang, Vigor
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 : 1957 - 1965
  • [7] Physical and ballistic characterization of AlH3-based space propellants
    DeLuca, L. T.
    Galfetti, L.
    Severini, F.
    Rossettini, L.
    Meda, L.
    Marra, G.
    D'Andrea, B.
    Weiser, V.
    Calabro, M.
    Vorozhtsov, A. B.
    Glazunov, A. A.
    Pavlovets, G. J.
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2007, 11 (01) : 18 - 25
  • [8] Characterization of HTPB-based solid fuel formulations: Performance, mechanical properties, and pollution
    DeLuca, L. T.
    Galfetti, L.
    Maggi, F.
    Colombo, G.
    Merotto, L.
    Boiocchi, M.
    Paravan, C.
    Reina, A.
    Tadini, P.
    Fanton, L.
    [J]. ACTA ASTRONAUTICA, 2013, 92 (02) : 150 - 162
  • [9] DeLuca L.T., 2011, PROGR PROPULSION PHY, V2, P405, DOI [DOI 10.1051/EUCASS/201102405, 10.1051/eucass/201304075]
  • [10] On the kinetics of AlH3 decomposition and the subsequent Al oxidation
    Eisenreich, Norbert
    Kessler, Armin
    Koleczko, Andreas
    Weiser, Volker
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (11) : 6286 - 6294