Dimension of singularities to the 3d simplified nematic liquid crystal flows

被引:4
作者
Liu, Qiao [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Nematic liquid crystal flows; Singular point; Hausdorff dimension; Minkowski dimension; FRACTAL DIMENSION; WELL-POSEDNESS; WEAK SOLUTIONS; SYSTEM; BEHAVIOR; POINTS; SET; REGULARITY; NUMBER;
D O I
10.1016/j.nonrwa.2018.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the possible singular set of suitable weak solutions (u, d) to the 3d simplified nematic liquid crystal flows, and prove that the parabolic upper Minkowski dimension of the possible singular set is bounded by 95/63. Moreover, if the suitable weak solution (u, d) of the 3d simplified nematic liquid crystal flows satisfies (u,del d) is an element of L-w (0,T; L-s (R-3)) with3 < w,s < infinity, then the parabolic upper Minkowski dimension of the singular set is no greater than max{w, s} (2/w + 3/s - 1). If the suitable weak solution (u, d) satisfies (u, del d) is an element of L-infinity (0,T; L-3,L-infinity (R-3)), where L-3,L-infinity(R-3) denotes the standard weak L-3-Lebesgue space, then the parabolic upper Minkowski dimension of the singular set is bounded by 1. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:246 / 259
页数:14
相关论文
共 32 条
[1]   WELL-POSEDNESS AND LONG TERM BEHAVIOR OF A SIMPLIFIED ERICKSEN-LESLIE NON-AUTONOMOUS SYSTEM FOR NEMATIC LIQUID CRYSTAL FLOWS [J].
Bosia, Stefano .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) :407-441
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]   Optimal Boundary Control of a Simplified Ericksen-Leslie System for Nematic Liquid Crystal Flows in 2D [J].
Cavaterra, Cecilia ;
Rocca, Elisabetta ;
Wu, Hao .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (03) :1037-1086
[4]   Local kinetic energy and singularities of the incompressible Navier-Stokes equations [J].
Choe, Hi Jun ;
Yang, Minsuk .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (02) :1171-1191
[5]   Hausdorff Measure of the Singular Set in the Incompressible Magnetohydrodynamic Equations [J].
Choe, Hi Jun ;
Yang, Minsuk .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (01) :171-198
[6]   ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE LIQUID CRYSTAL SYSTEM IN HM(R3) [J].
Dai, Mimi ;
Schonbek, Maria .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) :3131-3150
[7]  
ERICKSEN JL, 1962, ARCH RATION MECH AN, V9, P371
[8]  
Escauriaza L., 2003, RUSS MATH SURV, V58, P186
[9]  
Falconer K, 2014, FRACTAL GEOMETRY
[10]   Global strong solutions of the 2D simplified Ericksen-Leslie system [J].
Gong, Huajun ;
Huang, Jinrui ;
Liu, Lanming ;
Liu, Xiangao .
NONLINEARITY, 2015, 28 (10) :3677-3694