Study on Electrolyte Stability and Oxygen Reduction Reaction Mechanisms in the Presence of Manganese Oxide Catalysts for Aprotic Lithium-Oxygen Batteries

被引:6
作者
Augustin, Matthias [1 ,2 ]
Fenske, Daniela [1 ]
Parisi, Juergen [2 ]
机构
[1] Fraunhofer Inst Mfg Technol & Adv Mat, Wiener Str 12, D-28359 Bremen, Germany
[2] Carl von Ossietzky Univ Oldenburg, Dept Phys, Energy & Semicond Res Lab, Carl von Ossietzky Str 9-11, D-26111 Oldenburg, Germany
关键词
aprotic electrolyte; electrocatalysis; lithium-air batteries; manganese oxides; oxygen reduction reaction; LI-O-2; BATTERIES; LI2O2; OXIDATION; IONIC LIQUID; METAL; TEMPERATURE; PERFORMANCE; KINETICS; CATHODE; RECHARGEABILITY; DISCHARGE;
D O I
10.1002/ente.201600115
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The impact of different manganese oxide electrocatalysts on the oxygen reduction reaction (ORR) in aprotic media was investigated. In the absence of a catalyst on pure carbon powder, the ORR was found to proceed partially by O-2 dissociation before reduction. The O adatoms generated during this process have been reported previously to promote the decomposition of aprotic electrolytes. The extent to which this mechanism takes place depends strongly on the potential scan rate applied during the cyclic voltammetry measure-ments. The presence of manganese oxides has different effects on the reaction mechanism: whereas Mn3O4 and Mn5O8 nanoparticles promote chemical O-2 dissociation, mesoporous alpha-Mn2O3 particles suppress this mechanism in favor of the direct reduction of O-2, thus forming the desired final product Li2O2. These results lead to a better understanding of the morphological and structural properties, which ideal catalysts for an application in aprotic Li-air batteries should exhibit.
引用
收藏
页码:1531 / 1542
页数:12
相关论文
共 66 条
[1]   Oxygen Electrode Rechargeability in an Ionic Liquid for the Li-Air Battery [J].
Allen, Chris J. ;
Mukerjee, Sanjeey ;
Plichta, Edward J. ;
Hendrickson, Mary A. ;
Abraham, K. M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (19) :2420-2424
[2]   Mechanistic study on the activity of manganese oxide catalysts for oxygen reduction reaction in an aprotic electrolyte [J].
Augustin, Matthias ;
Yezerska, Olga ;
Fenske, Daniela ;
Bardenhagen, Ingo ;
Westphal, Anne ;
Knipper, Martin ;
Plaggenborg, Thorsten ;
Kolny-Olesiak, Joanna ;
Parisi, Juergen .
ELECTROCHIMICA ACTA, 2015, 158 :383-389
[3]   Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence [J].
Augustin, Matthias ;
Fenske, Daniela ;
Bardenhagen, Ingo ;
Westphal, Anne ;
Knipper, Martin ;
Plaggenborg, Thorsten ;
Kolny-Olesiak, Joanna ;
Parisi, Juergen .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 :47-59
[4]   Sulfone-Based Electrolytes for Nonaqueous Li-O2 Batteries [J].
Barde, Fanny ;
Chen, Yuhui ;
Johnson, Lee ;
Schaltin, Stijn ;
Fransaer, Jan ;
Bruce, Peter G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (33) :18892-18898
[5]   In situ investigation of pore clogging during discharge of a Li/O2 battery by electrochemical impedance spectroscopy [J].
Bardenhagen, Ingo ;
Yezerska, Olga ;
Augustin, Matthias ;
Fenske, Daniela ;
Wittstock, Arne ;
Baeumer, Marcus .
JOURNAL OF POWER SOURCES, 2015, 278 :255-264
[6]   Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization [J].
Black, Robert ;
Oh, Si Hyoung ;
Lee, Jin-Hyon ;
Yim, Taeeun ;
Adams, Brian ;
Nazar, Linda F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :2902-2905
[7]  
Bockris J., 2002, MODERN ELECTROCHEMIS, V2A
[8]  
Brett C., 1993, Electrochemistry: Principles, Methods, and Applications
[9]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[10]   A rotating ring disk electrode study of the oxygen reduction reaction in lithium containing non aqueous electrolyte [J].
Calvo, E. J. ;
Mozhzhukhina, N. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 31 :56-58